研究论文

EGS载热流体水岩作用对人工地热储层裂隙物性特征的影响

  • 鲍新华 ,
  • 吴永东 ,
  • 魏铭聪 ,
  • 金显鹏 ,
  • 王淑媛
展开
  • 1. 吉林大学环境与资源学院, 长春 130021;
    2. 中国石油大庆油田有限责任公司, 大庆 163000
鲍新华,副教授,研究方向为地热及水文地质,电子信箱:bxinhua@163.com

收稿日期: 2013-09-22

  修回日期: 2014-03-24

  网络出版日期: 2014-05-29

基金资助

国家高技术研究发展计划(863计划)项目(2012AA052801)

Impact of Water/CO2-Rock Interactions on Formation Physical Properties in EGS

  • BAO Xinhua ,
  • WU Yongdong ,
  • WEI Mingcong ,
  • JIN Xianpeng ,
  • WANG Shuyuan
Expand
  • 1. College of Environment and Resources, Jilin University, Changchun 130021, China;
    2. Daqing Oil-field Limited Liability Company, PetroChina, Daqing 163000, China

Received date: 2013-09-22

  Revised date: 2014-03-24

  Online published: 2014-05-29

摘要

增强型地热系统(EGS)是一种从低渗透率低孔隙度岩层中提取热量的工程。载热流体注入深部地热储层后在储层裂隙发生水岩作用,引起地热储层矿物的溶解和沉淀,改变储层裂隙通道的物性特征,对EGS 的长期运行产生重要影响。以苏尔茨地区的一种典型花岗岩为人工地热储层,建立了一维多重相互作用连续统一体地质模型,将相同温度的CO2和水以相同压力注入人工地热储层裂隙通道中,探讨两种载热流体的水岩作用对储层裂隙物性特征的影响。结果表明,在同样的储层状态、相同的运行模式下,CO2-EGS 水岩作用对裂隙通道物性特征的影响明显小于H2O-EGS。

本文引用格式

鲍新华 , 吴永东 , 魏铭聪 , 金显鹏 , 王淑媛 . EGS载热流体水岩作用对人工地热储层裂隙物性特征的影响[J]. 科技导报, 2014 , 32(14) : 42 -47 . DOI: 10.3981/j.issn.1000-7857.2014.14.006

Abstract

The enhanced geothermal system (EGS) is an engineering technique that has been created to extract economical amounts of heat from geothermal resources of low permeability and porosity. After the heat-exchange fluid is injected into the deep geothermal reservoir, there will be a water-rock interaction in the fracture channel, causing the dissolution and precipitation of reservoir minerals and changing the physical properties of the fracture channel, influencing long-time running of EGS significantly. This paper concerns a typical granite in Soultz as a geothermal reservoir and builds up a one-dimensional MINC model. Then CO2 and water with identical temperatures and pressures are injected to contrast the effects of injected fluid water/CO2-rock interactions on the fractures in EGS. Results show that the effect of water-rock interaction of CO2-EGS on fracture channel properties is less obvious than that of H2OEGS on the same operation mode.

参考文献

[1] 康玲, 王时龙, 李川. 增强地热系统EGS 的人工热储技术[J]. 机械设 计与制造, 2008(9): 141-143. Kang Ling, Wang Shilong, Li Chuan. Reservoir technology in enhanced geothermal systems[J]. Machinery Design & Manufacture, 2008(9): 141-143.
[2] 张建英. 增强型地热系统(EGS) 资源开发利用研究[J]. 中国能源, 2011, 33(1): 29-32. Zhang Jianying. Study on exploitation and utilization in an enhanced geothermal system (EGS)[J]. Energy of China, 2011, 33(1): 29-32.
[3] Durst A C, Lee P A. Microwave conductivity due to scattering from extended linear defects in d-wave superconductors[J]. Physical Review B, 2002, 65(9): 094501.
[4] Rabemanana V, Violette S, De Marsily G, et al. Origin of the high variability of water mineral content in the bedrock aquifers of Southern Madagascar[J]. Journal of Hydrology, 2005, 310(1): 143-156.
[5] 王洋, 张可霓. 增强型地热系统(EGS) 的裂隙模拟方法[J]. 上海国土 资源, 2011, 32(3): 77-80. Wang Yang, Zhang Keni. Modeling approaches for fractures in an enhanced geothermal system (EGS)[J]. Shanghai Land and Resources, 2011, 32(3): 77-80.
[6] Xu T, Sonnenthal E, Spycher N, et al. TOUGHREACT: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration[J]. Computers & Geosciences, 2006, 32(2): 145-165.
[7] Vinsome P K W, Westerveld J. A simple method for predicting cap and base rock heat losses in thermal reservoir simulators[J]. Journal of Canadian Petroleum Technology, 1980, 19(3): 87-90.
[8] Pruess K. Enhanced geothermal systems (EGS) using CO2 as working fluid: A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367.
[9] Pruess K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49 (6): 1446-1454.
[10] Xu T, Rose P, Fayer S, et al. On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent[J]. Geofluids, 2009, 9(2): 167-177.
[11] Xu T, Pruess K, Apps J. Numerical studies of fluid-rock interactions in enhanced geothermal systems (EGS) with CO2 as working fluid[R]. Berkeley: Lawrence Berkeley National Laboratory, 2008.
文章导航

/