针对矿井瓦斯抽采在PVC 管壁电荷积聚产生强静电场而导致静电放电的危害,通过搭建塑性管瓦斯流动静电场测试装置,模拟测试瓦斯流动过程中塑性管道的静电场,同时数值计算静电放电有效点火能量。研究结果表明,改变瓦斯流速、管径和瓦斯浓度,PVC 管静电场总体趋势是开始时电场随时间逐渐增大,而后趋于稳定,流动瓦斯与PVC 管壁面摩擦产生电荷积聚而导致的静电场可达20 kV/m 以上。以甲烷的最小点燃能量0.28 mJ 为标准,大多时刻PVC 管静电放电有效点火能量小于0.28mJ,处于安全状态,但某些时刻有效点火能量大于0.28 mJ,使得瓦斯处于爆炸的最小点火能量范围。从试验分析瓦斯抽采PVC 管静电场及有效点火能量,可为矿井瓦斯抽采防静电措施提供科学依据。
Electrostatic discharge caused by strong electrostatic voltage due to charge accumulation on the PVC pipe wall has potential damages to coal mine gas drainage. In this paper, a set of device is built to test the electrostatic voltage of the PVC pipe during coal mine gas drainage process, and effective ignition energy of electrostatic discharge is calculated. The test results show that with variation of the gas flow velocity, PVC pipe diameter, and gas concentration, the electrostatic voltage of the PVC pipe increases gradually with time at the beginning, and then tends to be stable. Due to friction between the gas and PVC pipe wall, charge accumulation on the wall causes strong electrostatic field of more than 20 kV/m. With the minimum ignition energy of 0.28 mJ for methane taken as the standard, the effective ignition energy for electrostatic discharge in PVC pipe is usually less than 0.28 mJ, which is under safe conditions. However, at some moments, the effective ignition energy is larger than the safe value, making the gas in the minimum ignition energy range of explosion. This study may provide scientific basis for anti-static measures during coal mine gas extraction.
[1] 司春风, 袁树杰. 煤矿井下瓦斯抽采PVC 管道爆炸原因分析及预防[J]. 安徽理工大学学报: 自然科学版, 2011, 31(3): 48-51. Si Chunfeng, Yuan Shujie. Analysis of coal mine gas explosion in drainage pipeline of PVC and its prevention[J]. Journal of Anhui University of Science and Technology: Natural Science Edition, 2011, 31(3): 48-51.
[2] 张玉川. 塑料管道国内外技术发展新动向(Ⅱ)[J]. 塑料, 2008, 37(4): 59-61. Zhang Yuchuan. New development of technology for plastics pipe system (Ⅱ)[J]. Plastics, 2008, 37(4): 59-61.
[3] 金小汉. 煤矿瓦斯爆炸的火花诱因分析与应对措施[J]. 矿业安全与环 保, 2008, 35(5): 66-68. Jin Xiaohan. Spark inducement analysis and preventive measures of coal mine gas explosion[J]. Mining Safety & Environmental Protection, 2008, 35(5): 66-68.
[4] 方堃. 高分子材料在煤矿中使用的安全性分析[J]. 华北科技学院学 报, 2005, 2(1): 24-27. Fang Kun. The high-molecular materials is the major source for the accidents in coal mining[J]. Journal of North China Institute of Science and Technology, 2005, 2(1): 24-27.
[5] 周本谋, 刘尚合, 范宝春. 粉体工业典型静电放电辐射场测试研究[J]. 测试技术学报, 2003, 17(4): 302-305. Zhou Benmou, Liu Shanghe, Fan Baochun. Investigation of the characteristics of radiate field from the ESD according to powder industrial production[J]. Jouranl of Test and Measurement Technology, 2003, 17(4): 302-305.
[6] 周本谋, 范宝春, 刘尚合. 静电放电火花能量耦合特性研究[J]. 高电压 技术学报, 2004, 30(4): 33-38. Zhou Benmou, Fan Baochun, Liu Shanghe. Reasearch for the characteristic of energy coupling linked to the sparks of electrostatic discharge[J]. High Voltage Engineering, 2004, 30(4): 33-38.
[7] ISSA Prevention Series No.2017(E). Static Electricity (Ignition hazards and protection measures)[S]. D-69115 Hei-delberg, Germany, 1996.
[8] Siwek R, Cizena Z. Ignition behavior of dusts: Meaning and interpretation[J]. Process Safety Progress, 1995, 14: 107-119.
[9] 孙可平, 刘闻灵, 郭鑫. 带电绝缘体静电放电引燃性新型实验[J]. 河北 大学学报: 自然科学版, 2010, 30(5): 477-480. Sun Keping, Liu Wenling, Guo Xin. New experimental on the incendivity of charged insulator[J]. Journal of Hebei University: Natural Science Edition, 2010, 30(5): 477-480.
[10] 张玉广, 董秀洁, 陈旭, 等. 静电火花放电能量的测量实验研究[J]. 中 原工学院学报, 2009, 20(4): 1-3. Zhang Yuguang, Dong Xiujie, Chen Xu, et al. Study on the measurement of the electrostatic spark discharge energy[J]. Journal of Zhongyuan University of Technology, 2009, 20(4): 1-3.
[11] 王树玉. 煤矿五大灾害事故分析和防治对策[M]. 徐州: 中国矿业大 学出版社, 2006. Wang Shuyu. Accident analysis and prevention countermeasures for the five disasters in coal mine[M]. Xuzhou: China University of Mining and Technology Press, 2006.
[12] 刘尚合, 武占成. 静电放电及危害防护[M]. 北京: 北京邮电大学出版 社, 2004. Liu Shanghe, Wu Zhancheng. Electrostatic discharge and harm protection[M]. Beijing: Beijing Posts and Telecommunications University Press, 2004.
[13] 邬素华, 文志红.PVC抗静电材料的研究[J].塑料, 2005, 34(4): 45-48. Wu Suhua, Wen Zhihong. Antistatic materials of PVC[J]. Plastics, 2005, 34(4): 45-48.
[14] 沈德明, 王文召. 塑料表面静电荷和放电能量的测定[J]. 煤矿机械与 电气, 1982(6): 38-40. Shen Deming, Wang Wenzhao. Determination of plastic surface electrostatic charge and discharge energy[J]. Colliery Mechanical & Electrical Technology, 1982(6): 38-40.
[15] 苏修军, 邹敏. 新型煤矿用PVC抗静电管材的研制[J]. 工程塑料应 用, 2004, 32(2): 41-42. Su Xiujun, Zou Min. Development of new PVC antistatic pipe used in colliery[J]. Engineering Plastics Application, 2004, 32(2): 41-42.