通过分析不同产地海蒿子、羊栖菜中无机元素含量及分布特征,以期为海藻药材有害元素限量标准制定、海藻资源的综合开发利用提供理论依据。海藻样品经灰化或消解处理后,采用微波消解-电感耦合等离子体-原子发射光谱法、碘离子选择性电极法分析了不同产地海藻药材的30 种无机元素,并运用主成分分析法对海藻药材进行了综合评价。结果表明,不同产地海藻含有19~26 种无机元素,无机元素平均含量按由高到低的顺序依次为K>Ca>Na>Mg。25 批海藻样品中,有害元素Cu 平均含量为7.83 mg/kg,Hg 为1.54 mg/kg,Pb 为3.07 mg/kg,Cd 为3.02 mg/kg,As 为109.35 mg/kg,Al 为1434.26 mg/kg。海蒿子、羊栖菜中大部分元素无显著性差异。主成分综合评分法显示,山东烟台海蒿子样品H4、H3和浙江温州羊栖菜样品Y5、Y6综合排序较高,表明在仅考虑无机元素含量的情况下,这4 种海藻样品品质较好。
The analysis and evaluation of inorganic elements in Sargassum pallidum and Sargassum fusiforme from different regions provide may theoretical evidences for formulating harmful elements limit standards and comprehensive utilization of sargassum. The contents of 30 inorganic elements in Sargassum from different regions were determined by ICP- AES and iodine ion- selective electrode after ashing and digestion. Principal component analysis was carried out to evaluate Sargassum samples. The results showed that Sargassum from different regions contain 19~26 inorganic elements, with the average contents K>Ca>Na>Mg. The mean values of Cu, Hg, Pb, Cd, As and Al are 7.83, 1.54, 3.07, 3.02, 109.35, and 1434.26 mg/kg, respectively. No significant difference between S. pallidum and S. fusiforme was found in most elements. Principal component comprehensive scoring showed Samples H4 and H3 of S. pallidum from Yantai and Samples Y5 and Y6 of S. fusiforme from Wenzhou are the top four, indicating that these regions have better S. pallidum and S. fusiforme in terms of inorganic elements.
[1] Stengel D B, Connan S, Popper Z A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application[J]. Biotechnology Advances, 2011, 29(5): 483-501.
[2] 中国药典委员会. 中华人民共和国药典·1部[S]. 北京: 中国医药科技 出版社, 2010: 277. Chinese Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China (Part I)[S]. Beijing: China Medical Science Press, 2010: 277.
[3] 曾呈奎, 陆保仁. 中国海藻志[M]. 北京: 科学出版社, 2000: 32. Zeng Chengkui, Lu Baoren. Flora algarum marinarum sinicarum[M]. Beijing: Science Press, 2000: 32.
[4] Aquaron R, Delange F, Marchal P, et al. Bioavailability of seaweed iodine in human beings[J]. Cellular and Molecular Biology, 2002, 48(5): 563-569.
[5] 严辉, 段金廒, 钱大玮, 等. 不同产地当归药材及其土壤无机元素的关 联分析与探讨[J]. 中药材, 2011, 34(4): 512-516. Yan Hui, Duan Jin'ao, Qian Dawei, et al. Correlation analysis and evaluation of inorganic elements in Angelica sinesis and its correspondence soil from different regions[J]. Journal of Chinese Medicinal Materials, 2011, 34(4): 512-516.
[6] 王孝举, 娄清香, 严小军. 新鲜海带中碘的含量与分布[J]. 海洋科学集刊, 1996, 37: 73-77. Wang Xiaoju, Lou Qingxiang, Yan Xiaojun. Contents and distribution of iodine in fresh Laminaria japonica[J]. Studia Marina Sinica, 1996, 37: 73-77.
[7] Rupérez P. Mineral content of edible marine seaweeds[J]. Food Chemistry, 2002, 79(1):23-26.
[8] Dawczynski C, Schafer U, Leiterer M, et al. Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products[J]. Journal of Agricultural and Food Chemistry, 2007, 55(25): 10470-10475.
[9] 李凤霞, 欧阳荔, 刘亚琼, 等. 466份中药材无机元素测定及结果分析[J]. 中国中药杂志, 2011, 36(21): 2994-3000. Li Fengxia, Ouyang Li, Liu Yaqiong, et al. Testing and analysis of inorganic elements in 466 traditional Chinese medicine materials[J]. China Journal of Chinese Materia Medica, 2011, 36(21): 2994-3000.
[10] Teas J, Pino S, Critchley A, et al. Variability of iodine content in common commercially available edible seaweeds[J]. Thyroid, 2004, 14 (10): 836-841.
[11] Li W H, Dong B S, Li P, et al. Benefits and risks from the national strategy for improvement of iodine nutrition: A community-based epidemiologic survey in Chinese schoolchildren[J]. Nutrition, 2012, 28 (11/12): 1142-1145.
[12] Giray B, Arnaud J, Sayek I, et al. Trace elements status in multinodular goiter[J]. Journal of Trace Elements in Medicine and Biology, 2010, 24(2): 106-110.
[13] 常秀莲, 王文华, 冯咏梅. 海藻吸附重金属离子的研究[J]. 海洋通 报, 2003, 22(2): 39-44. Chang Xiulian, Wang Wenhua, Feng Yongmei. Investigation of heavy metal biosorption on algae[J]. Marine Science Bulletin, 2003, 22(2): 39-44.
[14] 中华人民共和国商务部. 药用植物及制剂进出口绿色行业标准[S]. 北京: 中国标准出版社, 2004. Ministry of Commerce of the People's Republic of China. Green standards of medicinal plants and preparations for foreign trade and economy[S]. Beijing: China Standard Press, 2004.
[15] 中华人民共和国国家标准. GB2706-2007食品添加剂使用卫生标准[S]. 北京: 中国标准出版社, 2007. National Standards of the People's Republic of China. Hygienic standards for uses of food additives[S]. Beijing: China Standard Press, 2007.
[16] 李欣荣, 宿洁, 吴爱英. 电感耦合等离子体质谱法测定海洋天然药物 中5种重金属的含量[J]. 中国海洋药物杂志, 2010, 29(3): 68-70. Li Xinrong, Su Jie, Wu Aiying. Determination of 5 heavy metals in marine natural medicines by ICP-MS[J]. Chinese Journal of Marine Drugs, 2010, 29(3): 68-70.
[17] 尚德荣, 赵艳芳, 宁劲松, 等. 海藻中铝的化学形态分析[J]. 水产学 报, 2011, 35(4): 539-542. Shang Derong, Zhao Yanfang, Ning Jinsong, et al. Speciation analysis of aluminium in seaweed[J]. Journal of Fisheries of China, 2011, 35(4): 539-542.
[18] Hou X, Yan X. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae[J]. The Science of the Total Environment, 1998, 222(3): 141-156.
[19] 孙飚, 范晓, 韩丽君, 等. 我国马尾藻中砷的化学形态及其季节变化[J]. 海洋与湖沼, 1998, 29(3): 287-292. Sun Biao, Fan xiao, Han Lijun, et al. Chemical species and seasonal variations of arsenic in Chinese Sargassum samples[J]. Oceanologia and Limnologia Sinica, 1998, 29(3): 287-292.
[20] 康士秀, 沈显生, 黄宇营, 等. 青岛海藻重金属富集特性的SR-XRF 分析及对海洋环境监测的应用[J]. 光谱学与光谱分析, 2003, 23(1): 94-97. Kang Shixiu, Shen Xiansheng, Huang Yuying, et al. SR-XRF analysis of characteristics of heavy element concentration in Qingdao algae and application to monitoring oceanic pollution[J]. Spectroscopy and Spectral Analysis, 2003, 23(1): 94-97.