针对裂缝稠油油藏注入蒸汽的情况,研究热蒸汽对裂缝性地层的加热过程。通过引入分形理论表征裂缝的发育和分布情况,推导了裂缝的体积系数和裂缝储层的等效渗透率,考虑天然裂缝存在对稠油热采的渗流能力和传热机制的影响,结合能量平衡方程和渗流方程,求得裂缝稠油油藏蒸汽驱的温度分布的解析解。分析注气时间和裂缝参数对蒸汽驱加热范围的影响,发现裂缝分形维数比迂曲分形维数对加热范围有更大影响,说明分支裂缝的密度比分支裂缝的迂曲度对加热范围的影响更加明显。
The research of heating distribution in the steam flooding process in a fractured heavy oil reservoir is rare; this paper focuses on the hot steam injection into a fractured heavy oil reservoir and studies the heating process of the oil reservoir. Fractal theory is introduced to characterize the development and distribution of cracks. Fracture volume fraction and effective permeability are derived, which significantly affect the seepage capability and the heat-transfer mechanism. Combined with the energy balance equation and the seepage motion equation, an analytical solution to heating distribution is obtained for steam flooding in a fractured heavy oil reservoir. The effects of the steam injection time and cracks parameters on the steam flooding are analyzed. The results show that the fractal dimension can more obviously affect the heating range compared to the circuity fractal dimension. It is indicated that the density of the branching cracks is more important than the circuity form of the cracks.
[1] Marx J W, Langenheim R H. Reservoir heating by hot fluid injection[J]. Petroleum Transactions, AIME, 1959, 216: 312-315.
[2] Willman B T, Valleroy V V, Runberg G W, et al. Laboratory studies of oil recovery by steam injection[J]. Journal of Petroleum Technology, 1961, 13 (7): 681-690.
[3] Mandl G, Volek C W. Heat and mass transport in steam-drive processcs[J]. Society of Petroleum Engineers Journal, 1969, 9(1): 59-79.
[4] Poolaci-Darvish M, Tortike W S, Farouq Ali S M. Steam heating of fractured formations containing heavy oil: Basic premises and a singleblock analytical model[C]. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, September 25-28, 1994.
[5] 刘学利, 杜志敏, 韩忠艳, 等. 单井蒸汽辅助重力驱启动过程动态预测 模型[J]. 西南石油学院学报, 2004, 26(4): 34-37. Liu Xueli, Du Zhimin, Han Zhongyan, et al. The dynamic prediction model of starting process of sw-sagd[J].Journal of Southwest Petroleum Institute, 2004, 26(4): 34-37.
[6] 刘学利, 杜志敏, 韩忠艳, 等. 裂缝性稠油油藏蒸汽吞吐动态预测模型[J]. 新疆石油地质, 2003, 24(5): 448-450. Liu Xueli, Du Zhimin, Han Zhongyan, et al. A model for prediction of fractured heavy oil reservoir performance by steam stimulation process[J]. Xinjiang Petroleum Geology, 2003, 24(5): 448-450.
[7] Lauwerier H A. The transport of heat in an oil layer caused by the injection of hot fluid[J]. Applied Scientific Research, Section A, 1955, 5(2/ 3): 145-150.
[8] Cheng A H D, Ghassemi A, Detournay E. Integral equation solution of heat extraction from a fracture in hot dry rock[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(13): 1327-1338.
[9] 任晔. 单裂隙岩体渗流与传热耦合的解析解与参数敏感度分析[D]. 北 京: 北京交通大学, 2009. Ren Hua. Evaluation of analytical solution sand parameter sensitivities for coupled flow and heat transfer in single-fractured rocks[D]. Beijing: Beijing Jiaotong University, 2009.
[10] 徐鹏. 树状分形分叉网络的输运特性[D]. 武汉: 华中科技大学, 2008. Xu Peng. Transportproperties of fractal tree-like branching network[D]. Wuhan: Huazhong University of Science and Technology, 2008.
[11] Mauroy B, Filoche M, Weibel E R, et al. An optimal bronchial tree may be dangerous[J]. Nature, 2004, 427(6975): 633-636.
[12] Xu P, Yu B, Feng Y, et al. Analysis of permeability for the fractal-like tree network by parallel and series models[J]. Physica A: Statistical Mechanics and its Applications, 2006, 369(2): 884-894.
[13] Carslaw H S, Jaeger J C. Conduction of heat in solids[M]. 2nd ed. Oxford: Oxford University Press, 1986.