研究论文

某内陆核电厂冷却塔雾羽对环境要素变化的响应分析

  • 郭瑞萍 ,
  • 杨春林 ,
  • 王博 ,
  • 张琼 ,
  • 陈海英 ,
  • 张春明 ,
  • 刘福东
展开
  • 1. 环境保护部核与辐射安全中心, 北京 100082;
    2. 河南科技学院资源与环境学院, 新乡 453003
郭瑞萍,高级工程师,研究方向为核电厂大气环境影响评价,电子信箱:guorp2011@163.com

收稿日期: 2014-01-29

  修回日期: 2014-04-03

  网络出版日期: 2014-06-20

基金资助

国家科技重大专项(2013ZX06002001)

Response of Cooling Tower Plume of Inland Nuclear Power Plant to Environmental Elements

  • GUO Ruiping ,
  • YANG Chunlin ,
  • WANG Bo ,
  • ZHANG Qiong ,
  • CHEN Haiying ,
  • ZHANG Chunming ,
  • LIU Fudong
Expand
  • 1. Nuclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082, China;
    2. Department of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China

Received date: 2014-01-29

  Revised date: 2014-04-03

  Online published: 2014-06-20

摘要

冷却塔雾羽扩散直接影响冷却塔周围区域居民生活环境,是内陆核电厂散热系统运行环境影响评价时首要考虑的重要问题。应用冷却塔环境影响评价模型(SACTI),针对不同环境温度和风速变化情景下自然通风冷却塔雾羽特征参数进行模拟,以确定不同季节气象要素变化可能对冷却塔雾羽扩散产生的影响。研究表明,SACTI 模型预测的不同温度条件下雾羽长度发生频率随温度增高呈下降趋势;雾羽高度发生频率随温度下降呈增加趋势、随温度增高呈减少趋势;雾羽半径发生频率随温度变化呈减少趋势。不同风速条件下,雾羽长度发生频率随风速增加呈增加趋势,雾羽高度发生频率随风速增加呈减少趋势,雾羽半径发生频率随风速增加呈减少趋势。冷却塔雾羽受温度和风速影响显著,直接影响不同季节冷却塔雾羽扩散。

本文引用格式

郭瑞萍 , 杨春林 , 王博 , 张琼 , 陈海英 , 张春明 , 刘福东 . 某内陆核电厂冷却塔雾羽对环境要素变化的响应分析[J]. 科技导报, 2014 , 32(17) : 46 -53 . DOI: 10.3981/j.issn.1000-7857.2014.17.007

Abstract

Plume dispersion of cooling towers is the most important environment problem in environmental impact assessment of an inland nuclear power plant, which greatly impacts the living environment of the residents around the plant. The SACTI (seasonal/annual cooling tower impact) model is used to simulate the plume characters of natural draft of the cooling tower under different environmental temperature and wind speed scenarios in order to determine the influences of the meteorological factors in different seasons on plume dispersion of the cooling tower. The study shows that under different temperature circumstances, the plume length frequency predicted by the SACTI model decreases with the temperature increase. The plume height frequency displays an ascending trend with the descending temperature and shows the descending trend with the ascending temperature. The plume radius frequency has a decreasing change with temperature change. Under different wind speed scenarios, the plume length frequency increases with the increasing wind speed. The plume height frequency displays a descending change with the ascending wind speed. The plume radius frequency with respect to wind speed has a similar varying trend to that of the plume height frequency. The effects of temperature and wind speed on the cooling tower plume are very remarkable and impact cooling tower plume dispersion in different seasons.

参考文献

[1] 任永建, 赖安伟, 高庆先. 基于数值模拟的区域大气环境研究[J]. 科技导报, 2008, 26(19): 31-36. Ren Yongjian, Lai Anwei, Gao Qingxian. Regional air environment study based on numerical simulation[J]. Science & Technology Review, 2008, 26(19): 31-36.
[2] 上官志洪, 张启明, 陶云良. 内陆核电厂冷却塔的环境影响预测计算[J]. 辐射防护, 2009, 29(4): 211-218. Shangguan Zhihong, Zhang Qiming, Tao Yunliang. Cooling tower environmental impact prediction at inland nuclear power plant[J]. Radiation Protection, 2009, 29(4): 211-218.
[3] 国家核安全局. HAD101/02核电厂厂址选择的大气弥散问题[R]//核安全导则汇编. 北京: 中国法制出版社, 1998. National Nuclear Safety Administration. HAD101/02 Atmospheric dispersion on the site selection of nuclear power plant[S]//Nuclear Safety Guide Assembly. Beijing: China Legal Publishing House, 1998.
[4] 郭栋鹏, 姚仁太, 乔清党, 等. 核电厂冷却塔水汽扩散影响因素的分析[J]. 空气动力学学报, 2011, 29(2): 240-247. Guo Dongpeng, Yao Rentai, Qiao Qingdang, et al. The influencing factors analysis of water vapor diffusion regulation of the NPP's cooling tower[J]. Acta Aerodynamica Sinica, 2011, 29(2): 240-247.
[5] Bornoff R B, Mokhtarzadeh-Dehghan M R. A numerical study of interacting buoyant cooling-tower plumes[J]. Atmospheric Environment, 2001, 35(3): 589-598.
[6] Meroney R N. CFD prediction of cooling tower drift[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(6): 463-490.
[7] 王炫. 基于CFD模型的内陆核电厂厂区流场模拟[J]. 气象与环境学报, 2012, 28(3): 54-60. Wang Xuan. Wind field simulation in an inland nuclear power plant based on a CFD model[J]. Journal of Meteorology and Environment, 2012, 28(3): 54-60.
[8] Hanna S R. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant[J]. Atmospheric Environment (1967), 1976, 10(12): 1043-1052.
[9] LaVerne M E. Oak Ridge fog and drift code (ORFAD) user's manual[R]. Oak Ridge, TN: Oak Ridge National Labortatory, 1977.
[10] Moore R D. The KUMULUS model for Plume and Drift Deposition Calculations for Indian Point Unit No. 2[R]. Knoxville, TN: Environmental Systems Corporation, 1977: 189-210.
[11] Fuchs H, Hofman W. A refined method to calculate the shadowing by cooling tower plumes[C]//Proceeding of IAHR Cooling Tower Workshop, San Francisco, USA, September 22-25, 1980.
[12] Carhart R A, Policastro A J. A second-generation model for cooling tower plume rise and dispersion[J]. Atmospheric Environment, 1991, 25 (8): 1559-1576.
[13] US Nuclear Regulatory Commission. Standard review plans for environment reviews for nuclear power plant: Environmental standard review plans (NUREG-1555) [S]. Washington DC Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission, 2000.
[14] Wigley T M L, Slawson P R. The effect of atmospheric conditions on the length of visible cooling tower plumes[J]. Atmospheric Environment, 1975, 9(4): 437-445.
[15] Lucas M, Martinez P J, Ruiz J, et al. On the influence of psychrometric ambient conditions on cooling tower drift deposition[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 594-604.
[16] Electric Power Research Institute. SACTI user's manuai: Cooling tower plume prediction code[R]. California: Electric Power Research Institute, 1987.
[17] Policastro A J, Dunn W E, Carhart R A. A model for seasonal and annual cooling tower impacts[J]. Atmospheric Environment, 1994, 28(3): 379-395.
[18] Carhart R A, Policastro A J, Dunn W E. An improved method for predicting seasonal and annual shadowing from cooling tower plumes[J]. Atmospheric Environment, 1992, 26 (15): 2845-2852.
[19] 王炫, 杜风雷. SACTI模型在核电厂大型自然通风冷却塔对局地环境影响预测评价中的应用[J]. 辐射防护, 2013, 33(4): 199-205. Wang Xuan, Du Fenglei. Application of SACTI model in environmental impact prediction and assessment of NPP's large scale natural draft cooling tower[J]. Radiation Protection, 2013, 33(4): 199-205.
[20] 郭栋鹏, 姚仁太. 核电厂冷却塔水汽抬升与液滴沉降规律数值模拟技术分析[J]. 辐射防护, 2010, 30(2): 102-107. Guo Dongpeng, Yao Rentai. Discussion on numerical simulation techniques for patterns of water vapor rise and droplet deposition at NPP cooling tower[J]. Radiation Protection, 2010, 30(2): 102-107.
文章导航

/