分形维数是多孔介质不规则程度的度量,以渝东南下寒武统页岩的氮气吸附法测量结果为研究对象,采用FHH 模型的分形维数计算方法,得到渝东南下寒武统页岩的分形维数。研究结果表明,渝东南下寒武统页岩孔隙的分形维数具有明显孔径分界点,即具有双重分形特征,小孔隙分形维数D1变化范围在2.3559~2.6577,平均值为2.488,大孔隙分形维数D2变化范围在2.5971~2.8746,平均值为2.7631;大孔隙分形维数的平均值大于小孔隙分形维数的平均值,说明大孔隙结构的复杂程度大于小孔隙结构的复杂程度;页岩孔隙的分形维数与有机碳(TOC)含量、吸附气量、比表面积和孔容呈正相关,其中与孔隙的比表面积和孔容的相关性显著,而与黏土矿物含量呈弱负相关。
The fractal dimensions of pore structure of shale in the southeast Chongqing are calculated using the FHH model based on measured results of the pore structure by nitrogen adsorption. The result shows that the fractal dimensions of pore structure of shale in the southeast Chongqing obviously have the aperture boundary point, that is to say, have the dual fractal feature. The fractal dimension values of the big pore structure are 2.3559-2.6577, with an average of 2.488, and the fractal dimension values of the small pore structure are 2.5971-2.8746, with an average of 2.7631. The small pore structure, with a larger fractal dimension value, shows a higher degree of complexity than the large pore structure. There is a positive correlation among the fractal dimension values of shale pore structure and TOC content, gas adsorption, specific surface area and pore volume. Especially, it is found that the fractal dimension values show a significantly positive correlation with the specific surface area and pore volume. Whereas, there is a negative correlation between the fractal dimension values of shale pore structure and clay mineral content.
[1] 陈杰, 周改英, 赵喜亮, 等. 储层岩石孔隙结构特征研究方法综述[J]. 特种油气藏, 2005, 12(4): 11-14. Chen Jie, Zhou Gaiying, Zhao Xiliang, et al. Overview of study methods of reservoir rock pore structure[J]. Special Oil & Gas Reservoirs, 2005, 12(4): 11-14.
[2] Pfeiferper P, Avnir D. Chemistry nonintegral dimensions between two and three[J]. The Journal of Chemical Physics, 1983, 79(7): 3369-3558.
[3] Katz A J, Thompson A H. Fractal sandstone pores: Implication for conductivity and formation[J]. Physical Review Letters, 1985, 54(3): 1325-1328.
[4] Krohn C E. Fractal measurements of sandstone, shales and carbonates[J]. Journal of Geophysical Research, 1988, 93(B4): 3297-3305.
[5] Tsakiroglou C D, Payatakes A C. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation[J]. Advances in Water Resources, 2000, 23(7): 773-789.
[6] Radlinski A P, loannidis M A, Hinde A L, et al. Angstrom to millimeter characterization of sedimentary rock microstructure[J]. Journal of Colloid and Interface Science, 2004, 274(2): 607-612.
[7] 张宸恺, 沈金松, 樊震. 应用分形理论研究鄂尔多斯MHM油田低孔渗 储层孔隙结构[J]. 石油与天然气地质, 2007, 28(1): 110-115. Zhang Chenkai, Shen Jinsong, Fan Zhen. Pore structure study of low porosity and permeability reservoirs in MHM oilfield of Ordos Basin with fractal theory[J]. Oil & Gas Geology, 2007, 28(1): 110-115.
[8] 陈亮, 谭凯旋, 刘江, 等. 新疆某砂岩铀矿含矿层孔隙结构的分形特征[J]. 中山大学学报: 自然科学版, 2012, 51(6): 139-144. Chen Liang, Tan Kaixuan, Liu Jiang, et al. Pore structure fractal features of the ore-bearinglayer from a sandstone-type uranium deposit, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 139-144.
[9] 安士凯, 桑树勋, 李仰民, 等. 沁水盆地南部高煤级煤储层孔隙分形特 征[J]. 中国煤炭地质, 2011, 23(2): 17-21. An Shikai, Sang Shuxun, Li Yangmin, et al. Study on pore fractal characteristics of high-rank coal reservoirs in Southern Qinshui Basin[J]. Coal Geology of China, 2011, 23(2): 17-21.
[10] 杨宇, 孙晗森, 彭小东, 等. 煤层气储层孔隙结构分形特征定量研究[J]. 特种油气藏, 2013, 20(1): 31-33. Yang Yu, Sun Hansen, Peng Xiaodong, et al. Quantitative ctudy on fractal characteristics of the structure of CBM reservoir[J]. Special Oil & Gas Reservoirs, 2013, 20(1): 31-33.
[11] 胡琳, 朱炎铭, 陈尚斌, 等. 蜀南双河龙马溪组页岩孔隙结构的分形 特征[J]. 新疆石油地质, 2013, 34(1): 79-82. Hu Lin, Zhu Yanming, Chen Shangbin, et al. Fractal characteristics of shale pore structure of longmaxi formation in shuanghe area in Southern Sichuan[J]. Xinjiang Petroleum Geology, 2013, 34(1): 79-82.
[12] Curtis J B. Fractured shale-gas systems[J]. AAPU Bulletin, 2002, 86 (11): 1921-1938.
[13] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[14] Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989(5): 1412-1433.
[15] 韩双彪, 张金川, 杨超, 等. 渝东南下寒武页岩纳米级孔隙特征及其 储气性能[J]. 煤炭学报, 2013, 38(6): 1038-1043. Han Shuangbiao, Zhang Jinchuan, Yang Chao, et al. The characteristics of nanoscale pore and its gas storage capability in the Lower Cambrian shale of Southeast Chongqing[J]. Journal of China Coal Society, 2013, 38(6): 1038-1043.
[16] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of American Chemistry Society, 1938, 60: 309-319.
[17] Barrett E P, Joiner L G, Halenda P P. The determination of pore volume and area distributions in porous substances I: Computations from nitrogen isotherms[J]. Journal of American Chemistry Society, 1951, 73(1): 373-380.
[18] Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2012, 103: 258-268.
[19] Yao Y, Liu D, Tang D, et al. Fractal characterization of adsorptionpores of coals from north China: An investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73 (1): 27-42.