综述文章

荒漠地区土壤表层固碳作用研究进展

  • 李珂 ,
  • 张洪勋
展开
  • 中国科学院大学资源与环境学院, 北京 100049
李珂,博士研究生,研究方向为荒漠地区藻类群落结构,电子信箱:like210@mails.ucas.ac.cn

收稿日期: 2014-02-21

  修回日期: 2014-03-17

  网络出版日期: 2014-07-16

基金资助

中国科学院战略性先导科技专项(XDA05030500)

Research Progress on Carbon Fixation in Desert Topsoils

  • LI Ke ,
  • ZHANG Hongxun
Expand
  • College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-02-21

  Revised date: 2014-03-17

  Online published: 2014-07-16

摘要

干旱、半干旱地区的生态环境条件脆弱,光能自养生物在荒漠地区地表的物质循环和能量流动中起着重要作用。藻类和苔藓是荒漠地区地表普遍存在的固碳生物,不仅能够改善土壤的物理性质,起到保护土壤的作用,同时能够通过特定蓝藻的固氮作用增加土壤的氮含量,最重要的是这些固碳生物能够通过光合作用固定空气中的CO2,是荒漠地区土壤表层固碳的主要贡献者。荒漠地区生态系统固碳量的研究也是研究全球气候变化的重要组成部分,固碳量的大小不仅受自然条件的约束,也与土壤表层固碳生物(主要是藻类和苔藓)的组成密切相关。当土壤中仅有丝状蓝藻存在时固碳速率较低,随着绿藻等高等藻类和苔藓的出现,固碳速率快速增加。本文综述了荒漠地区土壤表层固碳生物组成和影响地表固碳的因素,回顾和展望了地表固碳的研究方法。

本文引用格式

李珂 , 张洪勋 . 荒漠地区土壤表层固碳作用研究进展[J]. 科技导报, 2014 , 32(19) : 77 -83 . DOI: 10.3981/j.issn.1000-7857.2014.19.013

Abstract

Phototrophic organisms play an important role in biogeochemical cycles of elements in desert soil ecosystems, where the ecological environment is fragile. Algae and moss are ubiquitous and can take photosynthesis in desert ecosystems. They can improve the physical properties of soil to protect the soil, and some of them have the ability of nitrogen fixation to increase soil nitrogen storage. More importantly, these phototrophic organisms are the main contributors of soil carbon storage, because they can fix carbon dioxide. The study of carbon dioxide fixation ability of desert ecosystem is an important part of the study of global climate change. The amount of fixed carbon is not only affected by the natural conditions but also closely related to the composition and abundance of phototrophic microorganisms (mainly algae and moss). The photosynthesis rate is usually low when there are only filamentous cyanobacteria in the topsoils, and the photosynthesis rate will increase when green algae and moss inhabit the topsoils. This article is to summarize the composition of phototrophic organisms in desert topsoils and the influencing factors and review and forecast the analysis methods of carbon fixation.

参考文献

[1] Le Houérou H. Climate change, drought and desertification[J]. Journal of Arid Environments, 1996, 34(2): 133-186.
[2] 李鹏飞, 孙小明, 赵昕奕. 近50年中国干旱半干旱地区降水量与潜在 蒸散量分析[J]. 干旱区资源与环境, 2012, 26(7): 57-63. Li Pengfei, Sun Xiaoming, Zhao Xinyi. Analysis of precipitation and potential evapotranspiration in arid and semi area of China in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2012, 26(7): 57-63.
[3] Klopatek J, Conant R, TKlopatek C. Environmental factors controlling soil respiration in three semiarid ecosystems[J]. Soil Science Society of America Journal, 2000, 64(1): 383-390.
[4] Wohlfahrt G, Fenstermaker L, Farnone III J. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology, 2008, 14(7): 1475-1487.
[5] Xie J, Li Y, Zhai C, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology, 2009, 56(5): 953-961.
[6] Belnap J, Lange O. Structure and functioning of biological soil crusts: A synthesis, in Ecological Studies[M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 471-479.
[7] 张元明, 王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述[J]. 生 态学报, 2010, 30(16): 4484-4492. Zhang Yuanming, Wang Xueqin. Summary on formation and developmental characteristics of biological soil crusts in desert areas[J]. Acta Ecologica Sinica, 2010, 30(16): 4484-4492.
[8] Harper K, Marble J. A role for nonvascular plants in management of arid and semiarid rangelands[M]//Tueller P. Vegetation Science Applications for Rangeland Analysis and Management. Boston: Kluwer Academic Publishers, 1988: 137-169.
[9] West N. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J]. Advances in Ecological Research, 1990, 20: 179-223.
[10] Belnap J. Surface disturbances: Their role in accelerating desertification[J]. Environmental Monitoring and Assessment, 1995, 37(1-3): 39-57.
[11] Evans R, Johansen J. Microbiotic crusts and ecosystem processes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 183-225.
[12] Lange O, Belnap J, Reichenberger H. Photosynthesis of the cyanobacterial soil crust lichen Collema tenax from arid lands in southern Utah, USA: Role of water content on light and temperature responses of CO2 exchange[J]. Functional Ecology, 2002, 12(2): 195-202.
[13] Langhans T, Storm C, Schwabe A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques[J]. Microbial Ecology, 2009, 58(2): 394-407.
[14] Abed R, Al Kharusi S, Schramm A, et al. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman[J]. FEMS Microbiology Ecology, 2010, 72(3): 418-428.
[15] Castillo-Monroy A, PMaestre F. Biological soil crusts: Recent advances in our knowledge of their structure and ecological function[J]. Revista Chilena De Historia Natural, 2011, 84(1): 1-21.
[16] Lan S, Wu L, Zhang D, et al. Assessing level of development and successional stages in biological soil crusts with biological indicators[J]. Microbial Ecology, 2013, 66(2): 394-403.
[17] Lange O, Kidron G, Budel B, et al. Taxonomic composition and photosynthetic characteristics of thebiological soil crusts' covering sand dunes in the western Negev Desert[J]. Functional Ecology, 1992, 6: 519-527.
[18] Belnap J, Gardner J. Soil microstructure in soils of the Colorado Plateau: The role of the cyanobacterium Microcoleus vaginatus[J]. Western North American Naturalist, 1993, 53(1): 40-47.
[19] Belnap J, Phillips S, Flint S, et al. Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions[J]. Global Change Biology, 2008, 14 (3): 670-686.
[20] Büdel B, Darienko T, Deutschewitz K, et al. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency[J]. Microbial Ecology, 2009, 57(2): 229-247.
[21] Belnap J. The potential roles of biological soil crusts in dryland hydrologic cycles[J]. Hydrological Processes, 2006, 20(15): 3159-3178.
[22] Sponseller R. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem[J]. Global Change Biology, 2007, 13(2): 426-436.
[23] Belnap J, Phillips S, Miller M. Response of desert biological soil crusts to alterations in precipitation frequency[J]. Oecologia, 2004, 141 (2): 306-316.
[24] Gao Y, Li X, Liu L, et al. Seasonal variation of carbon exchange from a revegetation area in a Chinese desert[J]. Agricultural and Forest Meteorology, 2012, 156: 134-142.
[25] Li X, Zhang P, Su Y, et al. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study[J]. Catena, 2012, 97: 119-126.
[26] Warren-Rhodes K, Rhodes K, Pointing S, et al. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert[J]. Microbial Ecology, 2006, 52(3): 389-398.
[27] Zaady E, Kuhn U, Wilske B, et al. Patterns of CO2 exchange in biological soil crusts of successional age[J]. Soil Biology and Biochemistry, 2000, 32(7): 959-966.
[28] GarciaPichel F, Belnap J. Microenvironments and microscale productivity of cyanobacterial desert crusts[J]. Journal of Phycology, 1996, 32(5): 774-782.
[29] Lange O. Photosynthesis of soil crust biota as dependent on environmental factors [M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 217-240.
[30] Grote E, Belnap J, Housman D, et al. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: Implications for global change[J]. Global Change Biology, 2010, 16(10): 2763-2774.
[31] Tracy C, Streten-Joyce C, Dalton R, et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in Northern Australia[J]. Environmental Microbiology, 2010, 12(3): 592-607.
[32] Belnap J. Biological soil crusts and wind erosion, in Ecological Studies[M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 339-347.
[33] 苏延贵, 李新荣, 陈应武, 等. 温度和CO2浓度升高对荒漠藻结皮光 合作用的影响[J]. 应用生态学报, 2010, 21(9): 2217-2222. Su Yangui, Li Xinrong, Chen Yingwu, et al. Effects of elevated temperature and CO2 on desert algal crust photosynthesis[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2217-2222.
[34] Garcia-Pichel F, Belnap J, Neuer S, et al. Estimates of global cyanobacterial biomass and its distribution[J]. Algological Studies, 2003, 109(1): 213-227.
[35] Chen L, Li D, Song L, et al. Effects of salt stress on carbohydrate metabolism in desert soil Alga Microcoleus vaginatus Gom[J]. Journal of Integrative Plant Biology, 2006, 48(8): 914-919.
[36] Mager D, Thomas A. Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes[J]. Journal of Arid Environments, 2011, 75(2): 91-97.
[37] Unland H, Houser P, Shuttleworth W, et al. Surface flux measurement and modeling at a semi-arid Sonoran Desert site[J]. Agricultural and Forest Meteorology, 1996, 82(1-4): 119-153.
[38] Thomas A, Hoon S, Linton P. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari[J]. Applied Soil Ecology, 2008, 39(3): 254-263.
[39] Kuhn U, Wolf A, Gries C, et al. Field measurements on the exchange of carbonyl sulfide between lichens and the atmosphere[J]. Atmospheric Environment, 2000, 34(28): 4867-4878.
[40] Su Y, Wu L, Zhang Y. Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China[J]. Catena, 2012, 96: 41-48.
[41] Schlesinger W, Pippen J, Wallenstein M, et al. Community composition and photosynthesis by photoautotrophs under quartz pebbles[J]. Southern Mojave Desert Ecology, 2003, 84(12): 3222-3231.
[42] Lee Y, Ahn C, Kim H, et al. Cyanobactericidal effect of Rhodococcus sp isolated from eutrophic lake on Microcystis sp[J]. Biotechnology Letters, 2010, 32(11): 1673-1678.
[43] 胡春香, 刘永定. 土壤藻生物量及其在荒漠结皮的影响因子[J]. 生态 学报, 2003, 23(2): 284-291. Hu Chunxiang, Liu Yongding. Soil algal biomass and its influential factors in desert soil crusts[J]. Acta Ecological Sinica, 2003, 23(2): 284-291.
[44] Garcia-Pichel F, Johnson S, Youngkin D, et al. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau[J]. Microbial Ecology, 2003, 46(3): 312-321.
[45] Castle S, Morrison C, Barger N. Extraction of chlorophyll a from biological soil crusts: A comparison of solvents for spectrophotometric determination[J]. Soil Biology and Biochemistry, 2011, 43(4): 853-856.
[46] 兰书斌, 刘永定, 胡春香. 不同有机溶剂萃取生物结皮中叶绿素a效 率的比较研究[J]. 中国沙漠, 2009, 29(3): 524-528. Lan Shubin, Liu Yongding, Hu Chunxiang. Comparison of contents of chlorophyll-a extracted by different organic solvents in biological crusts[J]. Journal of Desert Research, 2009, 29(3): 524-528.
[47] Lan S, Wu L, Zhang D. Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts[J]. Soil Biology and Biochemistry, 2011, 43(4): 857-861.
[48] Meyns S, Illi R, Ribi B. Comparison of chlorophyll-a analysis by HPLC and spectrophotometry: Where do the differences come from?[J]. Archiv fur Hydrobiologie, 1994, 132(2): 129-139.
[49] Housman D, Powers H, Collins A, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal of Arid Environments, 2006, 66(4): 620-634.
[50] 张晶, 张惠文, 张成刚. 实时荧光定量PCR及其在微生物生态学中的 应用[J]. 生态学报, 2005, 25(6): 1445-1450. Zhang Jing, Zhang Huiwen, Zhang Chenggang. Real-time fluorescent quantitative PCR and its application in microbial ecology[J]. Acta Ecological Sinica, 2005, 25(6): 1445-1450.
[51] Koskenniemi K, Lyra C, Rajaniemi-Wacklin P, et al. Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea[J]. Applied and Environmental Microbiology, 2007, 73(7): 2173-2179.
[52] Ginzinger D. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream[J]. Experimental Hematology, 2002, 30(6): 503-512.
[53] Rinta-Kanto J, Ouellette A, Boyer G, et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR[J]. Environmental Science and Technology, 2005, 39(11): 4198-4205.
[54] Moreira C, Martins A, Azevedo J, et al. Application of real-time PCR in the assessment of the toxic cyanobacterium Cylindrospermopsis raciborskii abundance and toxicological potential[J]. Applied Microbiology and Biotechnology, 2011, 92(1): 189-197.
[55] Li K, Liu R, Zhang H, et al. The diversity and abundance of bacteria and oxygenic phototrophs in Saline Biological Desert Crusts in Xinjiang, Northwest China[J]. Microbial Ecology, 2013, 66(1): 40-48.
[56] Bates S, Nash III T, Sweat K, et al. Fungal communities of lichendominated biological soil crusts: Diversity, relative microbial biomass, and their relationship to disturbance and crust cover[J]. Journal of Arid Environments, 2010, 74(10): 1192-1199.
[57] Garcia-Pichel F, Belnap J. Small-scale environments and distribution of biological soil crusts, in Ecological Studies[M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 193-201.
文章导航

/