[1] Wu G, Kang H, Zhang X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, ecoenvironmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1): 1-8.
[2] Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530.
[3] Qiu Q, Wang Y T, Yang Z Y, et al. Responses of different Chinese flowering cabbage (Brassica parachinensis L.) cultivars to cadmium and lead exposure: screening for Cd+Pb pollution-safe cultivars[J]. Clean-Soil, Air, Water, 2011, 39 (11): 925-932.
[4] Smith S E, Read D J. Mycorrhizal symbiosis[M]. Cambridge: Academic Press, 2008.
[5] 王宇涛, 辛国荣, 李韶山. 丛枝菌根真菌最新分类系统与物种多样性研究概况[J]. 生态学报, 2013, 33(3): 834-843.
[6] Leung H M, Ye Z H, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 2006, 139(1): 1-8.
[7] Cornejo P, Meier S, Borie G, et al. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration[J]. Science of the Total Environment, 2008, 406(1/2): 154-160.
[8] Cicatelli A, Lingua G, Todeschini V, et al. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metalcontaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression[J]. Annals of Botany, 2010, 106(5): 791-802.
[9] Audet P, Charest C. Effects of AM colonization on "wild tobacco" plants grown in zinc-contaminated soil[J]. Mycorrhiza, 2006, 16(4): 277-283.
[10] Wang Y Y, Vestberg M, Walker C, et al. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China[J]. Mycorrhiza, 2008, 18(2): 59-68.
[11] Gianinazzi S, Gollotte A, Binet M, et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services[J]. Mycorrhiza, 2010, 20 (8): 519-530.
[12] Behie S W, Bidochka M J. Potential agricultural benefits through biotechnological manipulation of plant fungal associations[J]. Bioessays, 2013, 35(4): 328-331.
[13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. 2000. Lu Rukun. Methods for Soil Agrochemistry Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[14] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of British Mycological Society, 1970, 55(1): 158-161.
[15] McGonigle T P, Miller M H, Evans D G, et al. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi[J]. New Phytologist, 1990, 115(3): 495-501.
[16] 魏志琴, 陈志勇, 秦蓉, 等. Cu2+对拟南芥根的局部毒性及诱导DNA损伤和细胞死亡[J]. 植物学报, 2013, 48(3): 303-312. Wei Zhiqin, Chen Zhiyong, Qin Rong, et al. Cu2+ induced local toxicity and DNA damage, cell death in roots of Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2013, 48(3): 303-312.
[17] Wang Y T, Qiu Q, Xin G R, et al. Heavy metal contamination in a vulnerable mangrove swamp in South China[J]. Environmental Monitoring and Assessment, 2013, 185(7): 5775-5787.
[18] De Filippis L F, Pallaghy C K. Heavy metals: sources and biological effects[M]. Rai L C, Caur J P, Soeder C J. Algae and Water Pollution: Advances in Limnology Series, Schweizerbart, Stuttgart, 1994.
[19] Cairney J W G, Meharg A A. Influences of anthropogenic pollution on mycorrhizal fungal communities[J]. Environmental Pollution, 1999, 106 (2): 169-182.
[20] Lingua G, Franchin C, Todeschini V, et al. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones[J]. Environmental Pollution, 2008, 153(1): 137-147.
[21] Chen X, Wu C H, Tang J J, et al. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment[J]. Chemosphere, 2005, 60(5): 665-671.
[22] Marques A P G C, Oliveira R S, Rangel A O S S, et al. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65(7): 1256-1263.
[23] Pawlowska T E, Charvat I. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi[J]. Applied and Environmental Microbiology, 2004, 70(11): 6643-6649.
[24] Hildebrandt U, Regvar M, Bothe H. Arbuscular mycorrhiza and heavy metal tolerance[J]. Phytochemistry, 2007, 68(1): 139-146.
[25] Weissenhorn L, Leyval C, Berthelin J. Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in soil polluted by atmospheric deposition from a smelter[J]. Biology and Fertility of Soils, 1995, 19(1): 22-28.
[26] Whitfield L, Richards A J, Rimmer D L. Effects of mycorrhizal colonization on Thymus polytrichus from heavy-metal-contaminated sites in northern England[J]. Mycorrhiza, 2004, 14(1): 47-54.
[27] Göhre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6): 1115-1122.
[28] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62: 227-250.
[29] Andrade S A L, Gratão P L, Schiavinato M A, et al. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations[J]. Chemosphere, 2009, 75(10): 1363-1370.
[30] Jahromi F, Aroca R, Porcel R, et al. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants[J]. Microbial Ecology, 2008, 55(1): 45-53.
[31] Gamalero E, Lingua G, Berta G, et al. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress[J]. Canadian Journal of Microbiology, 2009, 55(5): 501-514.
[32] Meier S, Borie F, Bolan N, et al. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7): 741-775.
[33] Hu J L, Wu F Y, Wu S C, et al. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model[J]. Chemosphere, 2013, 91(4): 455-461.
[34] Meers E, Van Slycken S, Adriaensen K, et al. The use of bio-energy crops (Zea mays) for‘phytoattenuation’of heavy metals on moderately contaminated soils: A field experiment[J]. Chemosphere, 2010, 78(1): 35-41.
[35] Arbaoui S, Evlard A, Mhamdi M E W, et al. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals[J]. Biodegradation, 2013, 24(4): 563-567.
[36] Akkajit P, Desutter T, Tongcumpou C. Effects of sugarcane wasteproducts on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.)[J]. Environmental Science: Processes & Impacts, 2014, 16(1): 88-93.
[37] Van Slycken S, Witters N, Meers E, et al. Safe use of metalcontaminated agricultural land by cultivation of energy maize (Zea mays)[J]. Environmental Pollution, 2013, 178: 375-380.
[38] 肖家欣, 杨慧, 张绍铃. 丛枝菌根真菌对枳根净离子流及锌污染下枳苗矿质营养的影响[J]. 生态学报, 2012, 32(7): 2127-2134. Xiao Jiaxin, Yang Hui, Zhang Shaoling. Effects of arbuscular mycorrhizal fungus on net ion fluxes in the roots of trifoliate orange (Poncirus trifoliata) and mineral nutrition in seedlings under zinc contamination[J]. Acta Ecologica Sinica, 2012, 32(7): 2127–2134.
[39] Hu J L, Wu S C, Wu F Y, et al. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cdcontaminated acidic soil. Chemosphere, 2013, 93(7): 1359-1365.
[40] 罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, 2013, 33(13): 3898-3906. Luo Qiaoyu, Wang Xiaojuan, Lin Shuangshuang, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(13): 3898-3906.
[41] Andrade S A L, Silveira A P D, Mazzafera P. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica to increasing Zn and Cu concentrations in soil[J]. Science of the Total Environment, 2010, 408(22): 5381-5391.