研究论文

镉、铜复合污染下丛枝菌根真菌对玉米重金属吸收的影响

  • 王宇涛 ,
  • 邱丘 ,
  • 李韶山 ,
  • 辛国荣
展开
  • 1. 华南师范大学生命科学学院; 广东省高等学校生态与环境科学重点实验室, 广州510631;
    2. 中山大学生命科学学院; 广东省热带亚热带植物资源与利用重点实验室, 广州510275;
    3. 广州市水质监测中心, 广州510010
王宇涛,博士,研究方向为丛枝菌根真菌的环境与生态效应,电子信箱:wangyutao@scnu.edu.cn

收稿日期: 2014-03-17

  修回日期: 2014-05-15

  网络出版日期: 2014-08-01

基金资助

《科技导报》博士生创新研究资助计划项目(kjdb200902-9);国家自然科学基金项目(31371567);高等学校博士学科点专项科研基金项目(20134407120005)

Effects of Arbuscular Mycorrhizal Fungi on Heavy Metal Uptake of Maize Under Cd and Cu Combined Pollution Conditions

  • WANG Yutao ,
  • QIU Qiu ,
  • LI Shaoshan ,
  • XIN Guorong
Expand
  • 1. Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education Institutions; School of Life Science, South China Normal University, Guangzhou 510631, China;
    2. Guangdong Key Laboratory of Plant Resources; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
    3. Guangzhou Water Quality Monitoring Center, Guangzhou 510010, China

Received date: 2014-03-17

  Revised date: 2014-05-15

  Online published: 2014-08-01

摘要

农田重金属污染引发的环境问题日益受到关注。通过盆栽实验,开展Cd、Cu 复合污染条件下丛枝菌根真菌(AMF)对玉米的接种研究,探讨了重金属污染对宿主与AMF 共生的影响、AMF 对玉米重金属耐受性和吸收方面的作用。结果显示,AMF 具有一定的Cd、Cu 耐性,但重金属处理能明显抑制AMF 对玉米根系的侵染(P<0.05),尤其是减少AMF 的丛枝和泡囊结构形成。重金属明显抑制了玉米的生长,但AMF 能够缓解重金属的生物毒性效应,表现为玉米植株的生物量、株高的显著增加(P<0.05)。接种AMF 会显著提高玉米对Cd 和Cu 的积累(P<0.05)。结果表明,重金属污染对农田生态系统中农作物和AMF 均具有潜在的危害。在一定程度重金属污染的农田生态系统中,AMF 能够改善农作物对重金属的耐性,也可能提高重金属进入人类食物链的风险。

本文引用格式

王宇涛 , 邱丘 , 李韶山 , 辛国荣 . 镉、铜复合污染下丛枝菌根真菌对玉米重金属吸收的影响[J]. 科技导报, 2014 , 32(21) : 15 -20 . DOI: 10.3981/j.issn.1000-7857.2014.21.001

Abstract

The heavy metal contaminations in agricultural soil are a great threat to human health. In this study, a greenhouse experiment was conducted to investigate the effects of arbuscular mycorrhizal fungi (AMF) inoculation on Cd and Cu accumulation in maize under Cd-Cu combined pollutions, as well as the potential toxic effects of Cd-Cu pollution on AM symbiosis. It is shown that the heavy metal contamination significantly inhibits the symbiosis between AMF and maize (P<0.05), and the inhibition effects are more significant on the vesicle and arbuscular structures than on the hyphal structure of AMF. The heavy metal contamination also significantly inhibits the growth of maize (P<0.05), but the inhibition effects are obviously alleviated by AMF colonization. Besides, AMF inoculation significantly increases the Cd and Cu accumulations in both roots and shoots of host plants (P<0.05). The results from this study indicate that mild-to middle-levels of heavy metal contaminations in the agricultural soils could threat both crops and AMF. In the heavy metal contaminated farmlands, AMF could on one hand improve the tolerance of crops to heavy metals, while on the other hand increase the risks of heavy metals entering into human food chain by improving the heavy metal absorption of crop plants.

参考文献

[1] Wu G, Kang H, Zhang X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, ecoenvironmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1): 1-8.
[2] Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530.
[3] Qiu Q, Wang Y T, Yang Z Y, et al. Responses of different Chinese flowering cabbage (Brassica parachinensis L.) cultivars to cadmium and lead exposure: screening for Cd+Pb pollution-safe cultivars[J]. Clean-Soil, Air, Water, 2011, 39 (11): 925-932.
[4] Smith S E, Read D J. Mycorrhizal symbiosis[M]. Cambridge: Academic Press, 2008.
[5] 王宇涛, 辛国荣, 李韶山. 丛枝菌根真菌最新分类系统与物种多样性研究概况[J]. 生态学报, 2013, 33(3): 834-843.
[6] Leung H M, Ye Z H, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 2006, 139(1): 1-8.
[7] Cornejo P, Meier S, Borie G, et al. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration[J]. Science of the Total Environment, 2008, 406(1/2): 154-160.
[8] Cicatelli A, Lingua G, Todeschini V, et al. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metalcontaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression[J]. Annals of Botany, 2010, 106(5): 791-802.
[9] Audet P, Charest C. Effects of AM colonization on "wild tobacco" plants grown in zinc-contaminated soil[J]. Mycorrhiza, 2006, 16(4): 277-283.
[10] Wang Y Y, Vestberg M, Walker C, et al. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China[J]. Mycorrhiza, 2008, 18(2): 59-68.
[11] Gianinazzi S, Gollotte A, Binet M, et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services[J]. Mycorrhiza, 2010, 20 (8): 519-530.
[12] Behie S W, Bidochka M J. Potential agricultural benefits through biotechnological manipulation of plant fungal associations[J]. Bioessays, 2013, 35(4): 328-331.
[13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. 2000. Lu Rukun. Methods for Soil Agrochemistry Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[14] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of British Mycological Society, 1970, 55(1): 158-161.
[15] McGonigle T P, Miller M H, Evans D G, et al. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi[J]. New Phytologist, 1990, 115(3): 495-501.
[16] 魏志琴, 陈志勇, 秦蓉, 等. Cu2+对拟南芥根的局部毒性及诱导DNA损伤和细胞死亡[J]. 植物学报, 2013, 48(3): 303-312. Wei Zhiqin, Chen Zhiyong, Qin Rong, et al. Cu2+ induced local toxicity and DNA damage, cell death in roots of Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2013, 48(3): 303-312.
[17] Wang Y T, Qiu Q, Xin G R, et al. Heavy metal contamination in a vulnerable mangrove swamp in South China[J]. Environmental Monitoring and Assessment, 2013, 185(7): 5775-5787.
[18] De Filippis L F, Pallaghy C K. Heavy metals: sources and biological effects[M]. Rai L C, Caur J P, Soeder C J. Algae and Water Pollution: Advances in Limnology Series, Schweizerbart, Stuttgart, 1994.
[19] Cairney J W G, Meharg A A. Influences of anthropogenic pollution on mycorrhizal fungal communities[J]. Environmental Pollution, 1999, 106 (2): 169-182.
[20] Lingua G, Franchin C, Todeschini V, et al. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones[J]. Environmental Pollution, 2008, 153(1): 137-147.
[21] Chen X, Wu C H, Tang J J, et al. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment[J]. Chemosphere, 2005, 60(5): 665-671.
[22] Marques A P G C, Oliveira R S, Rangel A O S S, et al. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65(7): 1256-1263.
[23] Pawlowska T E, Charvat I. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi[J]. Applied and Environmental Microbiology, 2004, 70(11): 6643-6649.
[24] Hildebrandt U, Regvar M, Bothe H. Arbuscular mycorrhiza and heavy metal tolerance[J]. Phytochemistry, 2007, 68(1): 139-146.
[25] Weissenhorn L, Leyval C, Berthelin J. Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in soil polluted by atmospheric deposition from a smelter[J]. Biology and Fertility of Soils, 1995, 19(1): 22-28.
[26] Whitfield L, Richards A J, Rimmer D L. Effects of mycorrhizal colonization on Thymus polytrichus from heavy-metal-contaminated sites in northern England[J]. Mycorrhiza, 2004, 14(1): 47-54.
[27] Göhre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6): 1115-1122.
[28] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62: 227-250.
[29] Andrade S A L, Gratão P L, Schiavinato M A, et al. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations[J]. Chemosphere, 2009, 75(10): 1363-1370.
[30] Jahromi F, Aroca R, Porcel R, et al. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants[J]. Microbial Ecology, 2008, 55(1): 45-53.
[31] Gamalero E, Lingua G, Berta G, et al. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress[J]. Canadian Journal of Microbiology, 2009, 55(5): 501-514.
[32] Meier S, Borie F, Bolan N, et al. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7): 741-775.
[33] Hu J L, Wu F Y, Wu S C, et al. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model[J]. Chemosphere, 2013, 91(4): 455-461.
[34] Meers E, Van Slycken S, Adriaensen K, et al. The use of bio-energy crops (Zea mays) for‘phytoattenuation’of heavy metals on moderately contaminated soils: A field experiment[J]. Chemosphere, 2010, 78(1): 35-41.
[35] Arbaoui S, Evlard A, Mhamdi M E W, et al. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals[J]. Biodegradation, 2013, 24(4): 563-567.
[36] Akkajit P, Desutter T, Tongcumpou C. Effects of sugarcane wasteproducts on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.)[J]. Environmental Science: Processes & Impacts, 2014, 16(1): 88-93.
[37] Van Slycken S, Witters N, Meers E, et al. Safe use of metalcontaminated agricultural land by cultivation of energy maize (Zea mays)[J]. Environmental Pollution, 2013, 178: 375-380.
[38] 肖家欣, 杨慧, 张绍铃. 丛枝菌根真菌对枳根净离子流及锌污染下枳苗矿质营养的影响[J]. 生态学报, 2012, 32(7): 2127-2134. Xiao Jiaxin, Yang Hui, Zhang Shaoling. Effects of arbuscular mycorrhizal fungus on net ion fluxes in the roots of trifoliate orange (Poncirus trifoliata) and mineral nutrition in seedlings under zinc contamination[J]. Acta Ecologica Sinica, 2012, 32(7): 2127–2134.
[39] Hu J L, Wu S C, Wu F Y, et al. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cdcontaminated acidic soil. Chemosphere, 2013, 93(7): 1359-1365.
[40] 罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, 2013, 33(13): 3898-3906. Luo Qiaoyu, Wang Xiaojuan, Lin Shuangshuang, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(13): 3898-3906.
[41] Andrade S A L, Silveira A P D, Mazzafera P. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica to increasing Zn and Cu concentrations in soil[J]. Science of the Total Environment, 2010, 408(22): 5381-5391.
文章导航

/