研究论文

基于李雅普诺夫控制的随机开放量子系统特性分析

  • 丛爽 ,
  • 胡龙珍 ,
  • 薛静静 ,
  • 温杰
展开
  • 中国科学技术大学自动化系, 合肥230027
丛爽,教授,研究方向为先进控制策略、人工神经网络、智能控制及量子系统控制等,电子信箱:scong@ustc.edu.cn;胡龙珍(共同第一作者),硕士研究生,研究方向为开放量子系统的特性分析和状态控制,电子信箱:lzhzh1217@mail.ustc.edu.cn

收稿日期: 2014-03-10

  修回日期: 2014-06-11

  网络出版日期: 2014-08-15

基金资助

国家重点基础研究发展计划(973计划)项目(2006CB922000)

Characteristic Analysis of Stochastic Open Quantum Systems via Lyapunov-based Control

  • CONG Shuang ,
  • HU Longzhen ,
  • XUE Jingjing ,
  • WEN Jie
Expand
  • Department of Automation, University of Science and Technology of China, Hefei 230027, China

Received date: 2014-03-10

  Revised date: 2014-06-11

  Online published: 2014-08-15

摘要

测量给确定性的开放量子系统带来了随机项,使随机开放量子系统本身产生一些马尔科夫和非马尔科夫开放量子系统所不具有的特性,这些特性给随机开放量子系统带来一些新的作用和影响。在目前有关随机开放量子系统李雅普诺夫控制理论研究的基础上,分别对无控制作用下随机开放量子系统的内部特性、开关控制和连续控制作用下系统的状态转移性能进行仿真研究。结果表明,在测量所带来的随机回馈项的作用下,在无控制的自由演化情况下,系统的状态最终随机地收敛到测量算符的某个本征态,其可能达到的本征态的个数与初态密度矩阵中对角线非零元素的个数相等;不论是开关控制还是连续控制,系统都能够从任意的初始纯态转移到期望的本征态,但相比于开关控制,连续控制的收敛速度更快,达到期望目标态所用时间更短。

本文引用格式

丛爽 , 胡龙珍 , 薛静静 , 温杰 . 基于李雅普诺夫控制的随机开放量子系统特性分析[J]. 科技导报, 2014 , 32(22) : 15 -22 . DOI: 10.3981/j.issn.1000-7857.2014.22.001

Abstract

Quantum measurement brings a stochastic term to deterministic open quantum systems, which makes the systems display some unique characteristics distinguished from the Markovian and non-Markovian open quantum systems. These characteristics bring some new roles to and effect on the stochastic open quantum system. Based on the related work on the global stability for stochastic open quantum systems via Lyapunov stabilization theorem established recently, the characteristic analysis without control fields and the state transfer with the switching control and continuous control are studied, respectively. Numerical simulation experiments are implemented under the Matlab environment. The simulation results demonstrate that the system without the action of the control will randomly converge to some eigenstate of the measurement operator and the numbers of eigenstates and diagonal non-zero elements of the initial state's density matrix are equal, and that under the action of the control, the stochastic open quantum system can transfer the state from an arbitrary initial pure state to the desired target eigenstate.However, compared to the switching control, the continuous control system performance has a faster convergence speed and a shorter transfer time.

参考文献

[1] Wiseman H, Milburn G. Quantum measurement and control[M]. Cambridge: Cambridge University Press, 2010.
[2] Bouten L, Van Handel R, James M R. An introduction to quantum filtering[J]. SIAM Journal on Control and Optimization, 2007, 46(6): 2199-2241.
[3] Daoyi D, Petersen I R. Quantum control theory and applications: A survey[J]. IET Control Theory & Applications, 2010, 4(12): 2651-2671.
[4] Robert L C. Continuous measurement and stochastic methods in quantum optimal systems[D]. New Mexico: University of New Mexico Albuquerque, 2013.
[5] Shaiju A J, Petersen I R, James M R. Guaranteed cost LQG control of uncertain linear stochastic quantum systems[C]//Proceedings of the 2007 American Control Conference. New York City, USA: IEEE, 2007: 2118-2123.
[6] Maalouf A I, Petersen I R. Coherent H∞ control for a class of linear complex quantum systems[C]//2009 American Control Conference. St. Louis, USA: IEEE, 2009: 1472-1479.
[7] Van Handel R, Stockton J K, Mabuchi H. Modeling and feedback control design for quantum state preparation[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): 179-197.
[8] Van Handel R, Stockton J K, Mabuchi H. Feedback control of quantum state reduction[J]. IEEE Transactions on Automatic Contol, 2005, 50(6): 768-780.
[9] Altafini C, Ticozzi F. Almost global stochastic feedback stabilization of conditional quantum dynamics[EB/OL].[2005-10-28]. http://arxiv.org/abs/quant-ph/0510222.
[10] Mirrahimi M, Van Handel R. Stabilizing feedback controls for quantum systems[J]. SIAM Journal on Control and Optimization, 2007, 46(2): 445-467.
[11] Tsumura K. Global stabilization of n-dimensional quantum spin systems via continuous feedback[C]//Proceedings of the 2007 American Control Conference. New York City, USA: IEEE, 2007, 2129-2134.
[12] Tsumura K. Global stabilization at arbitrary eigenstates of ndimensional quantum spin systems via continuous feedback[C]//2008 American Control Conference. Seattle, USA: IEEE, 2008, 4148-4153.
[13] Ticozzi F, Nishio K, Altafini C. Stabilization of stochastic quantum dynamics via open and closed loop control[J]. IEEE Transactions on Automatic Control, 2013, 58(1): 74-85.
文章导航

/