为科学、精确地评价井下胶结矿柱的稳定性,提出基于超静定理论及数值模拟的矿柱稳定性分析方法。将人工胶结矿柱简化为超静定结构,建立超静定理论模型,计算矿柱在尾砂充填体不均匀侧压载荷、自重和顶部冒落拱压力综合作用下的最大应力,并采用Midas 有限元软件模拟分析矿柱的有效应力及应变位移,结合废石块胶结模型的单轴抗压强度试验值对矿柱的稳定性进行评价。以大红山铜矿人工胶结矿柱为例的分析结果显示,超静定理论模型计算的最大应力为6.27 MPa,数值模拟的最大应力、最大位移为3.55 MPa 和40.46 mm,试验测得的胶结废石块模型单轴抗压强度为10.9 MPa,表明采用超静定理论计算与数值模拟相结合评价矿柱稳定性的方法可行。
In order to evaluate the stability of cement pillar scientifically and accurately, an analytic evaluation method that is based on the theory of statically indeterminate structure and numerical simulation is proposed. An artificial pillar is simplified to a statically indeterminate structure and the maximum stress is calculated by an indeterminate model using the comprehensive action of tailings backfill lateral pressure, top loose rock pressure and its own gravity. The pillar stability is tested by uniaxial compressive test data on cemented waste-rock and the finite element analysis software Midas, which is used to simulate the loading force and output the effective stress and strain-displacement. The cement pillar of Dahongshan copper mine is used as an example, and it is shown that the maximum stresses by statically indeterminate theory and simulation software are 6.27 MPa and 3.55 MPa, respectively, the maximum strain-displacement is 40.46 mm, and the cemented waste-rock uniaxial compressive strength is 10.9 MPa. All of the above shows that it is feasible to test the pillar stability by the method of statically indeterminate and numerical simulation.
[1] 王洪武, 吴爱祥. 胶结充填体矿柱结构可靠性设计方法[J]. 黄金, 2003, 24(3): 27-30. Wang Hongwu, Wu Aixiang. The reliability design method of consolidated filling pillar structure[J]. Gold, 2003, 24(3): 27-30.
[2] 杨正松. 大红山铜矿高效低损无废开采技术研究[D]. 长沙: 中南大 学, 2011. Yang Zhengsong. Research on high efficiency and low loss and wasteless technique for Dahongshan copper mine[D]. Changsha: Central South University, 2011.
[3] Hassani F R, Mortazavi A, Shabani M. An investigation of mechanisms involved in backfill-rock mass behaviour in narrow vein mining[J]. Journal of the South African Institute of Mining and Metallurgy, 2008, 108(8): 463-472.
[4] 杨涛波, 王晓军, 熊雪强, 等. 房柱法深部开采人工矿柱合理宽度设计[J]. 有色金属科学与工程, 2011, 2(2): 84-85. Yang Taobo, Wang Xiaojun, Xiong Xueqiang, et al. Reasonable width design of artificial pillar for deep mining by room-and-pillar method[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 84-85.
[5] 张新国, 江宁, 张玉江, 等. 矸石膏体充填材料力学特性试验[J]. 金属 矿山, 2012(12): 127-135. Zhang Xinguo, Jiang Ning, Zhang Yujiang, et al. Study on mechanical properties of coal waste paste filling materials[J]. Metal Mine, 2012 (12): 127-135.
[6] 陈庆发, 古德生, 周科平, 等.对称协同开采人工矿柱失稳的突变理论 分析[J]. 中南大学学报: 自然科学版, 2012, 43(6): 2338-2342. Chen Qingfa, Gu Desheng, Zhou Keping, et al. Analysis of catastrophe theory for artificial pillar instability in symmetric synergistic mining[J]. Journal of Central South University: Natural Sciences Technology, 2012, 43(6): 2338-2342.
[7] Prathap G, Varadan T K. The inelastic large deformation of beams[J]. Journal of Applied Mechanics, 1976, 43(4): 689-690.
[8] Lo C C, Gupta S D. Bending of a nonlinear rectangular beam in large deflection[J]. Journal of Applied Mechanics, 1978, 45(1): 213-215.
[9] 李会知, 杨建中, 刘敏姗. 均布载荷作用下两端固支梁的弹塑性分析[J]. 河海大学学报: 自然科学版, 2005, 33(4): 447-451. Li Huizhi, Yang Jianzhong, Liu Minshan. Elastic-plastic analysis of beams fixed at two ends subjected to uniformly-distributed loads[J]. Journal of Hohai University: Natural Sciences, 2005, 33(4): 447-451.
[10] 吴东旭, 曾庆田, 魏仁旭. 大红山铜矿铜铁合采矿柱废石胶结充填工 艺技术研究[J]. 湖南有色金属, 2012, 28(6): 1-3. Wu Dongxu, Zeng Qingtian, Wei Renxu. Study on using waste rock cemented filling technology for copper and iron commingling in Dahongshan copper mine[J]. Hunan Nonferrous Metals, 2012, 28(6): 1-3.
[11] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2011. Liu Hongwen. Mechanics of materials[M]. Beijing: Higher Education Press, 2011.
[12] 陈锦艳. 有固定端的等截面单跨超静定梁的快速解法[J]. 中国科技 信息, 2008(18): 75-77. Chen Jinyan. Fast solution of the statically indeterminate beam with constant cross section and single-span with fixed-ends[J]. China Science and Technology Information, 2008(18): 75-77.