[1] 卢雯婷, 陈敬超, 冯晶, 等. 贵金属催化剂的应用研究进展[J]. 稀有金 属材料与工程, 2012, 41(1): 184-188. Lu Wenting, Chen Jingchao, Feng Jing, et al. Research progress of noble metal catalyst application[J]. Rare Metal Materials and Engineering, 2012, 41(1): 184-188.
[2] 康新婷, 汤慧萍, 张健, 等. 汽车尾气净化用贵金属催化剂研究进展[J]. 稀有金属材料与工程, 2006, 35(2): 442-447. Kang Xinting, Tang Huiping, Zhang Jian, et al. Research progress of noble metal catalysts for purifying vehicle exhaust gas[J]. Rare Metal Materials and Engineering, 2006, 35(2): 442-447.
[3] 张长斌, 贺泓, 王莲, 等. 负载型贵金属催化剂用于室温催化氧化甲醛 和室内空气净化[J]. 科学通报, 2009, 54(3): 278-286. Zhang Changbin, He Hong, Wang Lian, et al. Review of noble metal catalysts for the oxidation of formaldehyde and air purification in indoor environment at room temperature[J]. Chinese Science Bulletin, 2009, 54 (3): 278-286.
[4] 崔梅生, 张娜. 稀土催化材料及其应用[J]. 新材料产业, 2013(5): 27-30. Cui Meisheng, Zhang Na. Rare earth catalytic materials and their applications[J]. Advanced Materials Industry, 2013(5): 27-30.
[5] 詹望成, 郭耘, 郭杨龙, 等. 稀土催化材料的制备、结构及催化性能[J]. 中国科学:化学, 2012, 42(9): 1289-1307. Zhan Wangcheng, Guo Yun, Guo Yanglong, et al. Preparation, structure and catalytic performances of rare earth catalytic materials[J]. Scientia Sinica: Chemica, 2012, 42(9): 1289-1307.
[6] Kašpar J, Fornasiero P, Hickey N. Automotive catalytic converters: current status and some perspectives[J]. Catalysis Today, 2003, 77(4): 419-449.
[7] Silva F A, Ruiz J A C, Souza K R, et al. Partial oxidation of methane on Pt catalysts: Effect of the presence of ceria-zirconia mixed oxide and of metal content[J]. Applied Catalysis A: General 2009, 364(1/2): 122-129.
[8] Gaálová J, Topka P, Kaluža L, et al. Gold versus platinum on ceriazirconia mixed oxides in oxidation of ethanol and toluene[J]. Catalysis Today, 2011, 175(1): 231-237.
[9] Machida M, Murata Y, Kishikawa K, et al. On the reasons for high activity of CeO2 catalyst for soot[J]. Chemistry of Materials, 2008, 20 (13): 4489-4498.
[10] Pozdnyakova O, Teschner D, Wootsch A, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions[J]. Journal of Catalysis, 2006, 237(1): 1-16.
[11] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003, 301(5635): 935-938.
[12] Suzuki A, Nakamura K, Sato R, et al. Multi-scale theoretical study of support effect on sintering dynamics of Pt[J]. Surface Science, 2009, 603(20): 3049-3056.
[13] Nagai Y, Hirabayashi T, Dohmae K, et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction[J]. Journal of Catalysis, 2006, 242(1): 103-109.
[14] Bernal S, Calvino J J, Cauqui M A, et al. Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts[J]. Catalysis Today, 1999, 50(2): 175-206.
[15] Trovarelli A. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews-science and Engineering, 1996, 38(4): 439-520.
[16] Yang Z X, Lu Z S, Luo G X. First-principles study of the Pt/CeO2 (111) interface[J]. Physical Review B, 2007, 76(7): 075421.
[17] Foger K. Catalysis Science and Technology, Vol. 6 (J. R. Anderson and M. Boudart eds.)[M]. Berlin: Springer-Verlag, 1981.
[18] Murrell L L, Tauster S J, Anderson D R. Laser raman characterization of surface phase precious metal oxides formed on CeO2[J]. Studies in Surface Science and Catalysis, 1991, 71: 275-289.
[19] Brogan M S, Dines T J, Cairns J A. Raman spectroscopic study of the Pt-CeO2 interaction in the Pt/Al2O3-CeO2 catalyst[J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(10): 1461-1466.
[20] Yoshida H, Yazawa Y, Takagi N, et al. XANES study of the support effect on the state of platinum catalysts[J]. Journal of Synchrotron Radiation, 1999, 6(3): 471-473.
[21] Yoshida H, Yazawa Y, Hattori T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion[J]. Catalysis Today, 2003, 87(1): 19-28.
[22] Bernal S, Blanco G, Calvino J J, et al. HRTEM and TPO Study of the behavior under oxidizing conditions of some Rh/CeO2 catalysts[J]. Studies in Surface Science and Catalysis, 1994, 82: 507-514.
[23] Krause K R, Schabes-Retchkiman P, Schmidt L D. Microstructure of Rh-Ce particles on silica: Interactions between Ce and SiO2[J]. Journal of Catalysis, 1992, 134(1): 204-219.
[24] Alvarez-Galvan M C, Navarro R M, Rosa F, et al. Hydrogen production for fuel cell by oxidative reforming of diesel surrogate: Influence of ceria and/or lanthana over the activity of Pt/Al2O3 catalysts[J]. Fuel, 2008, 87(12): 2502-2511.
[25] Wang G, You R, Meng M. An optimized highly active and thermostable oxidation catalyst Pd/Ce-Zr-Y/Al2O3 calcined at superhigh temperature and used for C3H8 total oxidation[J]. Fuel, 2013, 103: 799-804.
[26] Shyu J Z, Otto K, Watkins W L H, et al. Characterization of Pd/γ-alumina catalysts containing ceria[J]. Journal of Catalysis, 1988, 114 (1): 23-33.
[27] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. Journal of the American Chemical Society, 1978, 100(1): 170-175.
[28] Bensalem A, Bozon-verduraz F, Perrichon V. Palladium-ceria catalysts: reversibility of hydrogen chemisorption and redox phenomena[J]. Journal of the Chemical Society, Faraday Transactions, 1995, 91(14): 2185-2189.
[29] Datye A K, Kalakkad D S, Yao M H, et al. Comparison of metal support interactions in Pt/TiO2 and Pt/CeO2[J]. Journal of Catalysis, 1995, 155(1): 148-153.
[30] Kpiński L, Wołcyrz M. Microstructure of Pd CeO2 catalyst: Effect of high temperature reduction in hydrogen[J]. Applied Catalysis A: General, 1997, 150(2): 197-220.
[31] Bernal S, Cauqui M A, Cifredo G A, et al. Chemical and microstructural investigation of Pt/CeO2 catalysts reduced at temperatures ranging from 473 to 973 K[J]. Catalysis Today, 1996, 29(1-4): 77-81.
[32] Bernal S, Botana F J, Calvino J J, et al. HREM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions[J]. Catalysis Today, 1995, 23(3): 219-250.
[33] Bernal S, Calvino J J, Gatica J M, et al. Nanostructural evolution of a Pt/CeO2 catalyst reduced at increasing temperatures (473-1223 K): A HREM study[J]. Journal of Catalysis, 1997, 169(2): 510-515.
[34] Fan J, Wu X D, Wu X D, et al. Thermal ageing of Pt on low-surfacearea CeO2-ZrO2-La2O3 mixed oxides: Effect on the OSC performance[J]. Applied Catalysis B: Environmental, 2008, 81(1/2): 38-48.
[35] Fan J, Wu X D, Yang L, et al. The SMSI between supported platinum and CeO2-ZrO2-La2O3 mixed oxides in oxidative atmosphere[J]. Catalysis Today, 2007, 126(3-4): 303-312.
[36] Bera P, Gayen A, Hegde M S, et al. Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation[J]. Journal Of Physical Chemistry B, 2003, 107(25): 6122-6130.
[37] Wang G, Meng M, Zha Y Q, et al. High-temperature close coupled catalysts Pd/Ce-Zr-M/Al2O3 (M=Y, Ca or Ba) used for the total oxidation of propane[J]. Fuel, 2010, 89(9): 2244-2251.
[38] Marques R, Darcy P, Costa P D, et al. Kinetics and mechanism of steady-state catalytic NO+O2 reactions on Pt/SiO2 and Pt/CeZrO2[J]. Journal of Molecular Catalysis A: Chemical, 2004, 221(1/2): 127-136.
[39] LiuS,WuXD,LinY,etal.Activeoxygen-assisted NO-NO2 recycling and decomposition of surface oxygenated species in diesel soot when employing a Pt/Ce0.6Zr0.4O2[J]. Chinese Journal of Catalysis, 2014, 35 (3): 407-415.
[40] Luo M F, Zheng X M. Redox behaviour and catalytic properties of Ce0.5Zr0.5O2-supported palladium catalysts[J]. Applied Catalysis A: General, 1999, 189(1): 15-21.
[41] Zhou H P, Wu H S, Shen J, et al. Thermally stable Pt/CeO2 heteronanocomposites with high catalytic activity[J]. Journal of the American Chemical Society, 2010, 132(14): 4998-4999.
[42] Liu S, Wu X D, Weng D, et al. Combined promoting effects of platinum and MnOx-CeO2 supported on alumina on NOx-assisted soot oxidation: Thermal stability and sulfur resistance[J]. Chemical Engineering Journal, 2012, 203: 25-35.
[43] Leitenburg C D, Trovarelli A, Kašpar J. A temperature-programmed and transient Kinetic study of CO2 activation and methanation over CeO2 supported noble metals[J]. Journal of Catalysis, 1997, 166(1): 98-107.
[44] Yao Y F Y. The oxidation of CO and hydrocarbons over noble metal catalysts[J]. Journal of Catalysis, 1984, 87(1): 152-162.
[45] Serre C, Garin F, Belot G, et al. Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 catalysts for the oxidation of carbon monoxide by oxygen: II. Influence of the pretreatment step on the oxidation mechanism[J]. Journal of Catalysis, 1993, 141(1): 9-20.
[46] Nunan J G, Robota H J, Cohn M J, et al. Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalytic activity[J]. Journal of Catalysis, 1992, 133(2): 309-324.
[47] Golunski S E, Hatcher H A, Rajaram R R, et al. Origins of lowtemperature three-way activity in Pt/CeO2[J]. Applied Catalysis B: Environmental, 1995, 5(4): 367-376.
[48] Deleitenburg C, Trovarelli A. Metal-support interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 catalysts as inferred from CO2 methanation activity[J]. Journal of Catalysis, 1995, 156(1): 171-174.
[49] Bunluesin T, Cordatos H, Gorte R J. Study of CO oxidation kinetics on Rh/Ceria[J]. Journal of Catalysis, 1995, 157(1): 222-226.
[50] Craciun R, Daniell W, Knözinger H. The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming[J]. Applied Catalysis A: General, 2002, 230(1/2): 153-168.
[51] Abid M, Paul-Boncour V, Touroude R. Pt/CeO2 catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states[J]. Applied Catalysis A: General, 2006, 297(1): 48-59.
[52] Cao Y D, Ran R, Wu X D, et al. Comparative study of ageing condition effects on Pd/Ce0.5Zr0.5O2 and Pd/Al2O3 catalysts: Catalytic activity, palladium nanoparticle structure and Pd-support interaction[J]. Applied Catalysis A: General, 2013, 457: 52-61.
[53] Hatanaka, M, Takahashi N, Tanabe T, et al. Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt-O-Ce bond[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 336-342.
[54] Yeung C M Y, Yu K M K, Fu Q J, et al. Engineering Pt in ceria for a maximum metal-support interaction in catalysis[J]. Journal of the American Chemical Society, 2005, 127(51): 18010-18011.
[55] Roy S, Marimuthu A, Hegde M S. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-δ : Catalytic and kinetic studies[J]. Applied Catalysis B: Environmental, 2007, 71(1/2): 23-31.
[56] Roy S, Hegde M S. Pd ion substituted CeO2: A superior de-NOx catalyst to Pt or Rh metal ion doped ceria[J]. Catalysis Communications, 2008, 9(5): 811-815.
[57] Meng L, Lin J J, Pu Z Y, et al. Identification of active sites for CO and CH4 oxidation over PdO/Ce1-xPdxO2-δ catalysts[J]. Applied Catalysis B: Environmental, 2012, 119-120: 117-122.