塔河油田地面原油集输金属管道主要材质为20#碳钢。地面原油集输金属管道腐蚀主要为内壁点蚀,点蚀区域存在有沉积物。为研究沉积物对地面原油金属集输管道的腐蚀行为的影响,在对管道内壁沉积物类型分析的基础上,通过将无、有沉积物覆盖的20#碳钢试片挂入高压釜来模拟现场腐蚀实验,应用失重法分析、电位极化曲线测试、丝束电极测试及扫描电镜技术对无沉积物覆盖的20#碳钢试片及有沉积物覆盖下的20#碳钢试片的腐蚀失重速度、腐蚀过程、腐蚀电位分布及扫描电镜特征进行测试。分析表明:无沉积物覆盖区20#碳钢相比有沉积物覆盖腐蚀失重速度小;两者腐蚀过程均受阴极扩散控制,后者阳极过程受到促进,腐蚀电位降低、耐蚀性变差;前者腐蚀电位分布随时间变化不大,以全面腐蚀为主,后者腐蚀电位分布随时间变化大,点蚀特征明显,建立了无、有沉积物覆盖的20#碳钢腐蚀行为影响过程模型。
The main material of the crude oil gathering and transportation pipeline in Tahe oilfield is 20# steel. The pipeline surface corrosion is mainly the wall pitting corrosion, with deposits in the pitting region. In order to study the corrosion behavior of sediments on the ground crude metal pipeline, based on the analysis on the sediment types on the inner wall of the pipeline, the cover of 20# carbon steel specimen with or without sediments is hanged in the autoclave to simulate the scene corrosion experiment, using the weight loss method, the polarization curve test, the wire beam electrode test and the scanning electron microscopy. With 20# carbon steel corrosion sediments under the coverage of the test piece, the weightlessness velocity, the corrosion process, the corrosion potential distribution and the SEM characteristics are determined, with no sediment covering the 20# carbon steel specimen. It is shown that in the area of 20# carbon steel without sediment covered, the corrosion weight loss rate is smaller than that with sediments covered; both corrosion processes are governed by the diffusion control, the latter by promoting the anodic process and reducing the corrosion potential and the corrosion resistance; the distribution of the corrosion potential does not change with time, the general corrosion, the corrosion potential distribution varies with time, with prominent pitting characteristics.
[1] 张江江, 张志宏, 羊东明, 等. 油气田地面集输碳钢管线内腐蚀检测技 术应用[J]. 材料导报, 2012, 26(S2): 118-122. Zhang Jiangjiang, Zhang Zhihong, Yang Dongming, et al. Corrosion detection technology for surface gathering carbon steel pipeline in oil and gas field[J]. Materials Review, 2012, 26(S2): 118-122.
[2] 唐世春, 张志宏, 张江江. 塔河油田点蚀测试及评价技术应用[J]. 科技 导报, 2013, 31(32): 42-48. Tang Shichun, Zhang Zhihong, Zhang Jiangjiang. Application of test and evaluation technology of pitting corrosion in Tahe oilfield[J]. Science & Technology Review, 2013, 31 (32): 42-48.
[3] 张志宏, 张江江, 刘冀宁, 等. 塔河油田腐蚀监测工艺评价及优化[C]. 全国油气田管道腐蚀检测、防护预警技术科技创新技术交流会. 昆 明, 8-14-18, 2012. Zhang Zhihong, Zhang Jiangjiang, Liu Jining, et al. Tahe oilfield corrosion monitoring process evaluation and optimization[C] //The National Oil and Gas Pipeline Corrosion Detection, Protection Warning Technology Innovation and Technological Exchanges Will. Kunming, August 14-18, 2012.
[4] 张江江, 黄鹏, 高淑红, 等. 超声C扫描检测技术在塔河油田管道检测 中的应用与评价[J]. 化工自动化及仪表, 2013, 40(11): 1355-1359. Zhang Jiangjiang, Huang Peng, Gao Shuhong, et al. Ultrasonic C-scan detection technology for pipe in spection and evaluation in Tahe oilfield[J]. Control and Instruments In Chemical Industry, 2013, 40(11): 1355-1359.
[5] 张志宏, 张江江, 高秋英, 等. 塔河油田某侧钻深井油管断裂失效原因 分析[J]. 科技导报, 2014, 32(7): 62-66. Zhang Zhihong, Zhang Jiangjiang, Gao Qiuying, et al. Analysis of rupture failure of sidetrack deep well pipe in Tahe oilfield[J]. Science & Technology Review, 2014, 32(7): 62-66.
[6] 张志宏, 张江江, 孙海礁, 等. 塔河油田某深井钻杆断裂原因[J]. 腐蚀 与防护, 2014, 35(2): 192-195. Zhang Zhihong, Zhang Jiangjiang, Sun Haijiao, et al. Fracture reason of a deep well drill pipe in Tahe oilfield[J]. Corrosion & Protection, 2014, 35(2): 192-195.
[7] 张江江, 刘冀宁. 表面工程应用实例[例33] 三元牺牲阳极镀层在油田 管道防腐中的应用[J]. 中国表面工程, 2014, 27(1): F0002. Zhang Jiangjiang, Liu Jining. Surface engineering application examples[Example 33] Application of ternary sacrificial anode coating for oilfield pipeline[J]. China Surface Engineering, 2014, 27(1): F0002.
[8] 石鑫, 张志宏, 刘强, 等. 塔河某单井管道频繁穿孔原因[J]. 油气储 运, 2011, 30(11): 848-850. Shi Xin, Zhang Zhihong, Liu Qiang, et al. Reason analysis on the corrosion to leak pipeline of well[J]. Oil & Gas Storage and Transportation, 2011, 30(11): 848-850.
[9] 张春颜, 钱文辉, 郑玉萍, 等. 深井油管CO2腐蚀规律及其应用研究[J]. 科技导报, 2012, 30(36): 47-51. Zhang Chunyan, Qian Wenhui, Zhen Yuping, et al. CO2 corrosion law and its applation to analysis of tubing in deep and super deep wells[J]. Science & Technology Review, 2012, 30(36): 47-51.
[10] 王树涛, 郑新艳, 李明志, 等. 抗硫套管钢P110SS在高含H2S/CO2条 件下的硫化物应力腐蚀破裂敏感性[J]. 腐蚀与防护, 2013, 34(3): 189-192. Wang Shutao, Zhen Xinyan, Li Mingzhi, et al. Stress corrosion cracking sensitivity of sulfide-resistant csaing steel P110SS in hyperbaric H2S/CO2 environments[J]. Corrosion & Protection, 2013, 34 (3): 189-192.
[11] 唐电, 陈再良. 电化学材料科学的发展前景[J]. 科技导报, 2002, 20 (6): 26-28. Tang Dian, Chen Zailiang. Prospects for development of electrochemical materials science[J]. Science & Technology Review, 2002, 20(6): 26-28.
[12] 边莉, 金宗哲. Fe系E(pE)-pH图及随时间变化规律[J]. 全面腐蚀控 制, 2008, 22(3): 25-28. Bian Li, Jin Zongzhe. E(pE)-pH diagrams of Fe system and transformation accoring to time[J]. Total Corrosion Control, 2008, 22 (3): 25-28.