研究论文

三峡水库干流典型消落带泥沙沉积过程

  • 唐强 ,
  • 贺秀斌 ,
  • 鲍玉海 ,
  • 钟荣华 ,
  • 阎丹丹 ,
  • 高进长
展开
  • 1. 中国科学院水利部成都山地灾害与环境研究所, 山地表生过程与生态调控重点实验室, 成都 610041;
    2. 中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085;
    3. 中国科学院大学, 北京 100049
唐强,博士研究生,研究方向为流域侵蚀产沙与示踪,电子信箱:qiangtang@imde.ac.cn

收稿日期: 2014-05-04

  修回日期: 2014-06-25

  网络出版日期: 2014-08-27

基金资助

《科技导报》博士生创新研究资助计划项目(kjdb2012007);中国科学院西部行动计划项目(KZCX-XB3-09);国家自然科学基金项目(41171222,41201272)

Sedimentation Processes in a Typical Riparian Zone Along the Yangtze Mainstream of the Three Gorges Reservoir

  • TANG Qiang ,
  • HE Xiubin ,
  • BAO Yuhai ,
  • ZHONG Ronghua ,
  • YAN Dandan ,
  • GAO Jinzhang
Expand
  • 1. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
    2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-05-04

  Revised date: 2014-06-25

  Online published: 2014-08-27

摘要

选择三峡水库中游干流典型消落带断面,现场调查泥沙沉积速率随高程分布,探讨三峡水库特定水位调节模式和长江上游泥沙输移的季节性特征对消落带泥沙沉积的影响。结果表明,消落带泥沙净沉积主要发生在145~168 m 高程,2010年累积净沉积厚度为1.1~39.9 cm,随高程增加逐渐减小,145~155 m 平均泥沙沉积厚度为14.9 cm,155~168 m 平均泥沙沉积厚度为2.6 cm;2013年累积净沉积厚度为3~80 cm,表明三峡水库干流消落带泥沙沉积过程迅速。泥沙粒径随高程增加逐渐变粗,体现在砂粒体积分数和中值粒径逐渐增大。消落带下部沉积泥沙颗粒组成与干流悬移质泥沙接近,而消落带上部沉积泥沙明显粗于干流悬浮泥沙。消落带泥沙沉积速率与水库水位调节密切相关,雨季水库低水位运行,长江悬移质输沙量的增加导致了消落带下部大量泥沙沉积;旱季水库高水位运行,长江悬移质输沙量减少导致消落带上部泥沙沉积速率降低,消落带河岸侵蚀对沉积泥沙贡献逐渐增大。消落带淹水时间随高程增加而缩短,长时间淹没有利于消落带下部泥沙沉积。综合推断,三峡水库干流消落带下部泥沙主要来源于雨季河流悬移质泥沙的沉积,而消落带上部沉积泥沙主要来自旱季消落带河岸侵蚀产沙。

本文引用格式

唐强 , 贺秀斌 , 鲍玉海 , 钟荣华 , 阎丹丹 , 高进长 . 三峡水库干流典型消落带泥沙沉积过程[J]. 科技导报, 2014 , 32(24) : 73 -77 . DOI: 10.3981/j.issn.1000-7857.2014.24.012

Abstract

A typical transect of the riparian zone along the Yangtze mainstream of the middle Three Gorges Reservoir is selected to determine the lateral distribution of sedimentation rates against elevation, and to explore the effect of the reservoir water level regulation and the seasonal variation of suspended sediment concentrations of the Upper Yangtze River. It is found that the net sedimentation mainly takes place within the portions between 145-168 m. The cumulative net sediment depth ranges from 1.1-39.9 cm during the 2010 survey and it decreases with the increase of the elevation. The average sediment depth is 14.9 cm between the elevations of 145-155 m, and 2.6 cm in the portions above. The sediment depth ranges from 3-80cm during the 2013 field survey, indicating the severity of the sediment accretion during the initial period of dam operation. The riparian sediments become coarser with the increase of the elevation, which indicates that the sandy fraction of the bulk sediment increases at a higher elevation. The sediment grain-size composition at lower elevations is close to that of the suspended sediment, while that at a higher elevation is coarser than the suspended sediment. The sedimentation in the riparian zone is closely related to the water level regulation induced by the regular dam operation. During a wet season when the reservoir water level is low, a high fluvial suspended sediment yield leads to a significant sedimentation in the lower portions of the riparian zone. During the dry season when the fluvial suspended sediment supply is limited, much fewer sedimentation occurs at the upper portions. Relatively longer inundation duration also contributes to a higher sediment depth in the lower portions of the riparian zone. It can thus be concluded that the sediment in the lower portions of the riparian zone is due to the fluvial suspended sediment yield during the wet season, while the sediment in the upper portions of the riparian zone originates from the bank erosion.

参考文献

[1] 张信宝, 文安邦, Walling D E, 等. 大型水库对长江上游主要干支流 河流输沙量的影响[J]. 泥沙研究, 2011(4): 59-66. Zhang Xinbao, Wen Anbang, Walling D E, et al. Effects of large-scale hydropower reservoirs on sediment loads in Upper Yangtze River and its major tributaries[J]. Journal of Sediment Research, 2011(4): 59-66.
[2] Li B, Yuan X Z, Xiao H Y, et al. Design of the dike-pond system in the littoral zone of a tributary in the Three Gorges Reservoir, China[J]. Ecological Engineering, 2011, 37(11): 1718-1725.
[3] Zhang Q F, Lou Z P. The environmental changes and mitigation actions in the Three Gorges Reservoir region, China[J]. Environmental Science and Policy, 2011, 14(8): 1132-1138.
[4] Ye C, Li S Y, Zhang Y L, et al. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China[J]. Journal of Hazardous Materials, 2011, 191(1-3): 366-372.
[5] 张虹. 三峡重庆库区消落区基本特征与生态功能分析[J]. 长江流域资 源与环境, 2008, 17(3): 374-378. Zhang Hong. Analysis of the characteristics and ecosystem service of the water-level-fluctuating zone in the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2008, 17(3): 374-378.
[6] Tang Q, Bao Y H, He X B, et al. Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2014, 479/480: 258-266.
[7] Bao Y H, Nan H W, He X B, et al. Sedimentation in the riparian zone of the Three Gorges Reservoir, China[C] //Proceedings of the ICCE symposium 2010. Warsaw, Poland: Sediment Dynamics for a Changing Future, 2010, 337: 224-228.
[8] Fu B J, Wu B F, Lu Y H, et al. Three Gorges Project: Efforts and challenges for the environment[J]. Progress in Physical Geography, 2010, 34(6): 741-754.
[9] Xu X B, Tan Y, Yang G S. Environmental impact assessments of the Three Gorges Project in China: Issues and interventions[J]. Earth-Science Reviews, 2013, 124: 115-125.
[10] Yuan X Z, Zhang Y W, Liu H, et al. The littoral zone in the Three Gorges Reservoir, China: Challenges and opportunities[J]. Environmental Science and Pollution Research, 2013, 20(10): 7092-7102.
[11] Hu B Q, Yang Z S, Wang H J, et al. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea[J]. Hydrology and Earth System Sciences, 2009, 13(11): 2253-2264.
[12] 李强, 丁武泉, 朱启红, 等. 三峡库区泥、沙沉降对低位狗牙根种群的 影响[J]. 生态学报, 2011, 31(6): 1567-1573. Li Qiang, Ding Wuquan, Zhu Qihong, et al. Influence of silt deposition and sand deposition on Cynodon dactylon population in low-water-level-fluctuating zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2011, 31(6): 1567-1573.
[13] Zhang M, Xu Y Y, Shao M L, et al. Sedimentary nutrients in the mainstream and its five tributary bays of a large subtropical reservoir (Three Gorges Reservoir, China) [J]. Quaternary International, 2012, 282: 171-177.
[14] 储立民, 常超, 谢宗强, 等. 三峡水库蓄水对消落带土壤重金属的影 响[J]. 土壤学报, 2011, 48(1): 192-196. Chu Limin, Chang Chao, Xie Zongqiang, et al. Effect of impounding of the Three-Gorges Reservoir on soil heavy metals in its hydrofluctuation belt[J]. Acta Pedologica Sinica, 2011, 48(1): 192-196.
[15] 李兆佳, 熊高明, 邓龙强, 等. 狗牙根与牛鞭草在三峡库区消落带水 淹结束后的抗氧化酶活力[J]. 生态学报, 2013, 33(11): 3362-3369. Li Zhaojia, Xiong Gaoming, Deng Longqiang, et al. Dynamics of antioxidant enzyme activities in roots of Cynodon and Hemarthria altissima recovering from annual flooding[J]. Acta Ecologica Sinica, 2013, 33(11): 3362-3369.
文章导航

/