研究论文

Mg/Al水滑石对铜绿微囊藻的去除性能

  • 秦芳 ,
  • 蒋钦凤 ,
  • 艾玉明 ,
  • 张瑶 ,
  • 蔡灿灿
展开
  • 武汉工程大学环境与城市建设学院, 武汉 430079
秦芳,讲师,研究方向为磷矿浮选理论,电子信箱:122061656@qq.com

收稿日期: 2014-03-10

  修回日期: 2014-07-16

  网络出版日期: 2014-09-16

基金资助

教育部新世纪优秀人才计划项目(NCET-12-0713);国家自然科学基金项目(51374157);湖北省自然科学基金项目(2013CFA106);武汉工程大学研究生教育创新基金(CX2013108)

Microcystis aeruginosa Removal Capacity of Mg-Al Hydrotalcite

  • QIN Fang ,
  • JIANG Qinfeng ,
  • AI Yuming ,
  • ZHANG Yao ,
  • CAI Cancan
Expand
  • School of Environment and Civil Engineering, Wuhan Institute of Technology, Wuhan 430079, China

Received date: 2014-03-10

  Revised date: 2014-07-16

  Online published: 2014-09-16

摘要

目前用于除藻的黏土矿物表面带负电荷,需通过改性提高黏土矿物的除藻能力,而改性材料会导致成本增加、产生二次污染等,因此研究了直接用表面带正电荷的黏土矿物进行除藻的可行性。通过共沉淀法制备Mg/Al 水滑石,并用其进行去除铜绿微囊藻的实验研究,探究了吸附剂用量、搅拌时间、铜绿微囊藻初始浓度以及pH 值对Mg/Al 水滑石去除铜绿微囊藻的影响。结果表明,吸附剂用量为1 g/L、搅拌1.5 h、pH=6~11 是Mg/Al 水滑石除藻的最佳条件;Mg/Al 水滑石对质量浓度为0.5~3.0 mg/L的铜绿微囊藻具有较高的去除率。

本文引用格式

秦芳 , 蒋钦凤 , 艾玉明 , 张瑶 , 蔡灿灿 . Mg/Al水滑石对铜绿微囊藻的去除性能[J]. 科技导报, 2014 , 32(25) : 36 -39 . DOI: 10.3981/j.issn.1000-7857.2014.25.005

Abstract

As most clay minerals are negatively charged, they need to be modified to improve the algae removal capacity, which, however, leads to increased cost and secondary pollution. Therefore, this paper explores the feasibility to use positively charged clay minerals for algae removal. Mg/Al hydrotalcite (Mg/Al-LDH) was synthesized by co-precipitation method and its calcination product (Mg/Al-LDO) was prepared by heating Mg/Al-LDH at 400℃. To know the practical applicability, a detailed study of Microcystis aeruginosa removal was carried out. The influences of sorbent concentration, stirring time, solution pH, and initial Microcystis aeruginosa concentration were investigated. The results indicate that the removal of Microcystis aeruginosa was the highest using 1 g/L of Mg/Al-LDO under pH 6-11 with stirring time of 1.5 h. Mg/Al-LDO had relatively high removal capacities at the initial Microcystis aeruginosa concentration range of 0.5~3.0 mg/L.

参考文献

[1] Westrick J A, Szlag D C, Southwell B J, et al. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment[J]. Analytical and Bioanalytical Chemistry, 2010, 397: 1705-1714.
[2] Dai R, Liu H, Qu J, et al. Cyanobacteria and their toxins in Guanting Reservoir of Beijing, China[J]. Journal of Hazardous Materials, 2008, 153(1/2): 470-477.
[3] 邵路路. 低强度超声波控藻效果及其机理研究[D]. 浙江: 宁波大学, 2012. Shao Lulu. Algal control effect and mechanism of low intensity ultrasonic[D]. Zhejiang: Ningbo University, 2012.
[4] Chen H, Chen J, Guo Y A, et al. Evaluation of the role of the glutathione redox cycle in Cu(Ⅱ) toxicity to green algae by a chiral perturbation approach[J]. Aquatic Toxicology, 2012, 120/121: 19-26.
[5] Wu C D, Xu X J, Liang J L, et al. Enhanced coagulation for treating slightly polluted algae-containing surface water combining polyaluminum chloride (PAC) with diatomite[J]. Desalination, 2011, 279: 140-145.
[6] 王智, 张志勇, 张君倩, 等. 两种水生植物对滇池草海富营养化水体水质的影响[J]. 中国环境科学, 2013, 33(2): 328-335 . Wang Zhi, Zhang Zhiyong, Zhang Junqian, et al. Water quality effects of two aquatic macrophytes on eutrophic water from Lake Dianchi Caohai[J]. China Environmental Science, 2013, 33(2): 328-335.
[7] 常会庆, 王世华, 徐晓峰, 等. 两种水生植物对重富营养化水体修复效果研究[J]. 水土保持研究, 2012, 19(5): 263-265. Chang Huiqing, Wang Shihua, Xu Xiaofeng, et al. Effects of two aquatic macrophytes on phytoremediation to severe eutrophic awter[J]. Research of Soil and Water Conservation, 2012, 19(5): 263-265.
[8] J Saúl G P, An N L B, Dries V, et al. Influence of magnesium concentration, biomass concentration and pH on flocculation of Chlorella vulgaris[J]. Algal Research, 2014, 3: 24-29.
[9] 杜胜蓝, 刘文杰, 臧常娟. 壳聚糖-沸石复合体对铜绿微囊藻的去除效果[J]. 水资源保护, 2013, 29(4): 87-90. Du Shenglan, Liu Wenjie, Zang Changjuan. Removal of Microcystis aeruginosa by chitosan-zeolite composite[J]. Water Resources Protection, 2013, 29(4): 87-90.
[10] 陈鹏涛, 姜昕宇, 马澜, 等. 绿色有机蒙脱石的制备表征及其抗菌活性[J]. 广州化工, 2013, 41(14): 62-64. Chen Pengtao, Jiang Xinyu, Ma Lan, et al. Preparation, characterization and antibacterial activity of green organic montmorillonite[J]. Guangzhou Chemical Industry, 2013, 41(14): 62-64.
[11] Tang Y, Zhang H, Liu X N. Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation[J]. Water Research, 2011, 45: 2855-2862.
[12] 谢伟楠, 范恒, 温其旺, 等. 新型表面活性剂改性膨润土对蓝藻去除性能的研究[J]. 能源与环境, 2014, 2: 78-80. Xie Weinan, Fan Heng, Wen Qiwang, et al. Removal capacity of blue algae by modified bentonite with new-type surface activator[J]. Energy and Environment, 2014, 2: 78-80.
[13] 丁洁仪, 葛利云, 邓欢欢, 等. 高岭土对淡水藻类的聚合氯化铝强化混凝去除技术研究[J]. 环境科学与管理, 2013, 38(9): 76-80. Ding Jieyi, Ge Liyun, Deng Huanhuan, et al. Removal of Aeruginosain freshwater algae by adding Kaolin in PAC flocculation process[J]. Environmental Science and Management, 2013, 38(9): 76-80.
[14] Pei H Y, Ma C X, Hu W R, et al. The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes[J]. Bioresource Technology, 2014, 151: 314-322.
[15] Grover K C, Komarneni S, Katsuki H. Synthetic hydrotalcite-type and hydrocalumite-type layered double hydroxides for arsenate uptake[J]. Applied Clay Science, 2010, 48: 631-637.
[16] Wan D J, Liu H J, Liu R P. Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/ Al ratio[J]. Chemical Engineering Journal, 2012, 195: 241-247.
[17] Yang Y Q, Gao N Y. Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al-Fe) hydrotalcite-like compounds[J]. Journal of Hazardous Materials, 2012, 209: 318-325.
[18] Triantafyllidis K S, Peleka E N, Komvokis V G, et al. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents[J]. Journal of Colloid and Interface Science, 2010, 342: 427-436.
[19] Zhang G C, Wu T, Li Y J, et al. Sorption of humic acid to organo layered double hydroxides in aqueous solution[J]. Chemical Engineering Journal, 2012, 191: 306-313.
[20] Jin S, Paul H F, Jeffrey M M, et al. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites[J]. Science and Technology of Advanced Materials, 2007, 8(1/2): 67-70.
[21] 夏枚生, 靳明建, 潘金敏, 等. 水滑石对蛋白核小球藻的生物学效应[J]. 硅酸盐学报, 2007, 35(9): 1237-1242. Xia Meisheng, Jin Mingjian, Pan Jinmin, et al. Biological effects of layered double hydroxide on chlorella pyrenoidosa[J]. Journal of Chinese Ceramic Society, 2007, 35(9): 1237-1242.
[22] Xu Y F, Yang J, Ou M M, et al. Study of Microcystis aeruginosa inhibition by electrochemical method[J]. Biochemical Engineering Journal, 2007, 36: 215-220.
[23] 吴剑, 孔倩, 杨柳燕. 铜绿微囊藻生长对培养液pH值和氮转化的影响[J]. 湖泊科学, 2009, 21(1): 123-127. Wu Jian, Kong Qian, Yang Liuyan. Effect of the growth of Microcystis aeruginosa on the pH value and the nitrogen transformation in the medium[J]. Journal of Lake Sciences, 2009, 21(1): 123-127.
[24] 刘欣. 焙烧水滑石对水中无机阴离子的吸附硏究[D]. 武汉: 武汉理工大学, 2012. Liu Xin. Adsorption behaviors of inorganic anions in water on calcined LDH[D]. Wuhan: Wuhan University of Technology, 2012.
文章导航

/