采用光电微流量计实现了微细流量的精确测量,建立了一套致密油藏岩心渗流曲线测试方法,分析了喉道半径、微裂缝和流体性质对致密油渗流规律及启动压力梯度的影响。研究结果表明:岩心由不同级别的喉道组成是致密油产生非线性渗流的本质,真实启动压力梯度与最大喉道半径具有较好的幂律关系,拟启动压力梯度和平均喉道半径具有较好的幂律关系;与基质型岩心相比,含微裂缝岩心的真实启动压力梯度和拟启动压力梯度都有所降低,真实启动压力梯度降低的幅度大于拟启动压力梯度;与模拟地层水相比,利用模拟油得到的真实启动压力梯度和拟启动压力梯度都有所增大,渗透率越低,不同流体介质得到的真实启动压力梯度和拟启动压力梯度差异越显著。
[1] 赵政璋, 杜金虎. 致密油气[M]. 北京: 石油工业出版社, 2012.Zhao Zhengzhang, Du Jinhu. Tight oil and gas[M]. Beijing: PetroleumIndustry Press, 2012.
[2] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 北京: 地质出版社, 2011.Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventionalpetroleum geology[M]. Beijing: Geological Publishing House, 2011.
[3] Zou C N, Yang Z, Tao S Z, et al. Continuous hydrocarbon accumulationover a large area as a distinguishing characteristic of unconventionalpetroleum: The Ordos Basin[J]. Earth Science Reviews, 2013, 126: 358-369.
[4] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.Jia Chengzao, Zou Caineng, Li Jianzhong, et al. Assessment criteria,main types, basic the tight oil features and resource prospects of inChina[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.
[5] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012,33(2):173-186.Zou Caineng, Zhu Rukai, Wu Songtao, et al Types, characteristics,genesis and prospects of conventional and unconventional hydrocarbonaccumulations: Taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica, 2012, 33(2): 173-186.
[6] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventionalhydrocarbon resources in China and the prospect of exploration anddevelopment [J]. Petroleum Exploration and Development, 2012, 39(2):129-136.
[7] 方文超, 姜汉桥, 孙彬峰, 等. 致密油藏特征及一种新型开发技术[J].科技导报, 2014, 32(7): 71-76.Fang Wenchao, Jiang Hanqiao, Sun Binfeng, et al. Characteristics oftight oil reservoir and a novel key technique for its development[J].Science & Technology Review, 2014, 32(7): 71-76.
[8] 周晓奇, 张磊, 王成军. 流体在特低渗透油藏中的渗流参数分析[J]. 科技导报, 2010, 28(5): 82-85.Zhou Xiaoqi, Zhang Lei, Wang Chengjun. Parameter analysis of fluidflow in low-permeability reservoir[J]. Science & Technology Review,2010, 28(5): 82-85.
[9] 毛伟, 包志晶, 杜朋举. 油层内非线性渗流分布区域确定方法[J]. 科技导报, 2012, 30(30): 49-52.Mao wei, Bao Zhijing, Du Pengju. Nonlinear percolation areadistribution in a reservoir[J]. Science & Technology Review, 2012, 30(30): 49-52.
[10] 汪伟英, 喻高明, 柯文丽, 等. 稠油非线性渗流测定方法研究[J]. 石油实验地质, 2013, 35(4): 464-467.Wang Weiying, Yu Gaomin, Ke Wenli, et al. Experimental study ofnonlinear seepage for heavy oil[J]. Petroleum Geology & Experiment,2013, 35(4): 464-467.
[11] 吕成远, 王建, 孙志刚. 低渗透砂岩油藏渗流启动压力梯度实验研究[J]. 石油勘探与开发, 2002, 29(2): 86-89.Lü Chengyuan, Wang Jian, Sun Zhigang. An experimental study onstarting pressure gradient of fluids flow in low permeability sandstoneporous media[J]. Petroleum Exploration and Development, 2002, 29(2): 86-89.
[12] 李爱芬, 张少辉, 刘敏, 等. 一种测定低渗油藏启动压力的新方法[J].中国石油大学学报: 自然科学版, 2008, 32(1): 68-71.Li Aifen, Zhang Shaohui, Liu Min, et al. A new method of measuringstarting pressure for low permeability reservoir[J]. Journal of ChinaUniversity of Petroleum: Edition of Natural Science, 2008, 32(1): 68-71.
[13] 黄延章. 低渗透油层非线性渗流特征[J]. 特种油气藏, 1997, 4(1): 9-14.Huang Yanzhang. Nonlinear porous flow feature in low permeabilityreservoir[J]. Special Oil & Gas Reservoirs, 1997, 4(1): 9-14.
[14] Wang X W, Yang Z M, Qi Y D, et al. The effect of absorptionboundary layer on the nonlinear flow in low permeability porous media[J]. Journal of Central South University of Technology, 2011, 18(4):1299-1303.
[15] 杨正明, 于荣泽, 苏致新, 等. 特低渗透油藏非线性渗流数值模拟[J].石油勘探与开发, 2010, 37(1): 94-98.Yang Zhengming, Yu Rongze, Su Zhixin, et al. Numerical simulationof the nonlinear flow in ultra-low permeability reservoirs[J]. PetroleumExploration and Development, 2010, 37(1): 94-98.
[16] 杨正明, 边晨旭, 刘先贵, 等. 典型低渗油区储层特征及水驱可动用性研究[J]. 西南石油大学学报: 自然科学版, 2013, 35(6): 83-88.Yang Zhengming, Bian Chenxu, Liu Xiangui, et al. Study on waterflooding production of typical low permeability reservoir feature[J].Journal of Southwest Petroleum University: Science & TechnologyEdition, 2013, 35(6): 83-88.