综述文章

非生物胁迫处理对植物离体组织培养再生效果影响研究进展

  • 佘茂云 ,
  • 殷桂香 ,
  • 杜丽璞 ,
  • 张平治 ,
  • 叶兴国
展开
  • 1. 安徽省农业科学院作物研究所, 合肥 230031;
    2. 中国农业科学院作物科学研究所;农作物基因资源与基因改良国家重大科学工程, 北京 100081
佘茂云, 助理研究员, 研究方向为作物营养代谢与逆境胁迫分子机理, 电子信箱: ahxiaoshe@126.com;殷桂香, 硕士, 研究方向为植物组织培养和遗传转化, 电子信箱: guixiangyin@126.com

收稿日期: 2014-06-27

  修回日期: 2014-07-15

  网络出版日期: 2014-10-24

基金资助

安徽省农业科学院科技创新团队项目(13C0202);安徽省种子工程项目(14D0202)

Research Progress on the Impact of Abiotic Stresses on Plant Regeneration During Tissue Culture in vitro

  • SHE Maoyun ,
  • YIN Guixiang ,
  • DU Lipu ,
  • ZHANG Pingzhi ,
  • YE Xingguo
Expand
  • 1. Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031;
    2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China

Received date: 2014-06-27

  Revised date: 2014-07-15

  Online published: 2014-10-24

摘要

植物离体组织培养再生性能受多种因素影响。早期关于提高植物组织培养和植株再生效率的策略往往侧重于基因型筛选、培养基改良和植物生长调节剂搭配等方面,忽略了环境胁迫条件对植物离体培养再生效果的影响。据此,综述了不同胁迫诱导对植物离体组织培养再生的影响,主要包括氧化、渗透、水分、伤害和温度等胁迫。氧化胁迫对植物细胞的再生过程具有双重作用,即氧化胁迫引发植物体内相关抗氧化胁迫酶类合成,从而促进再生,但是发生氧化胁迫的细胞因其细胞膜通透性发生改变,易导致细胞死亡;短期渗透胁迫对植物胚性愈伤组织再生能力具有明显的促进作用;伤害通过影响相关基因表达而对体细胞胚胎产生积极作用;温度对植物体细胞胚胎发生的影响具有发育阶段的特异性以及处理强度的依赖性,适度的温度处理可诱导出较多的胚性愈伤组织。因此,对用于组织培养的外植体进行适当的逆境胁迫前处理,有助于植物组织培养过程胚性愈伤组织的产生,并最终促进植物离体组织培养再生性能的提升。

本文引用格式

佘茂云 , 殷桂香 , 杜丽璞 , 张平治 , 叶兴国 . 非生物胁迫处理对植物离体组织培养再生效果影响研究进展[J]. 科技导报, 2014 , 32(28/29) : 97 -103 . DOI: 10.3981/j.issn.1000-7857.2014.28/29.014

Abstract

Plant regeneration performance during tissue culture in vitro is affected by many factors. To improve plant regeneration efficiency, the previous strategies focused on genotype screening, optimization on media components, and combination of plant growth regulators, while paying little attention to the significant impact of environmental stress on plant regeneration. This paper summarizes the recent research progress on different stress-induced effects on plant regeneration during tissue culture in vitro, including oxidative stress, osmotic stress, wounding, and cold stress. The oxidative stress plays a dual role in the plant regeneration process, i.e., induction of relevant stress antioxidant enzymes synthesis contributing to plant regeneration positively and changes on cell membrane permeability caused by oxidative stress leading to cell death negatively. The short-term osmotic stress significantly promotes the plant regeneration potential. Wounding has a positive effect on somatic embryogenesis by activating the relevant gene expression. The effect of temperature on the development of plant embryonic cells depends on the plant developmental stage and treatment intensity, and moderate temperature pretreatment can induce more embryonic calli. Therefore, appropriate stress pretreatment on explants used for tissue culture may contribute to the formation of embryogenic calli greatly, and may ultimately help to improve plant regeneration capacity during tissue culture in vitro.

参考文献

[1] Karami O, Saidi A. The molecular basis for stress-induced acquisitionof somatic embryogenesis[J]. Molecular Biology Reports, 2010, 37(5):2493-2507.
[2] Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidativedamage and oxygen deprivation stress: A review[J]. Annals of Botany,2003, 91(2): 179-194.
[3] Obert B, Benson E E, Millam S, et al. Moderation of morphogenetic andoxidative stress responses in flax in vitro cultures by hydroxynonenaland desferrioxamine[J]. Journal of Plant Physiology, 2005, 162(5): 537-547.
[4] Papadakis A K, Siminis C I, Roubelakis-Angelakis K A. Reduced activityof antioxidant machinery is correlated with suppression of totipotency inplant protoplasts[J]. Plant Physiology, 2001, 126(1): 434-444.
[5] Szechyńska-Hebda M, Skrzypek E, Dąbrowska G, et al. The role ofoxidative stress induced by growth regulators in the regenerationprocess of wheat[J]. Acta Physiologiae Plantarum, 2007, 29(4): 327-337.
[6] Gallie D R. The role of L-ascorbic acid recycling in responding toenvironmental stress and in promoting plant growth[J]. Journal ofExperimental Botany, 2013, 64(2): 433-443.
[7] Zavattieri M A, Frederico A M, Lima M, et al. Induction of somaticembryogenesis as an example of stress-related plant reactions[J].Electronic Journal of Biotechnology, 2010, 13(1): 12-13.
[8] Tuteja N, Gill S, Tuteja R. Plant responses to abiotic stresses: Sheddinglight on salt, drought, cold, and heavy metal stress[J]. Omics and PlantStress Tolerance, Benjam Science Publisher, USA, 2011: 39-64.
[9] Ikeda-Iwai M, Umehara M, Satoh S, et al. Stress-induced somaticembryogenesis in vegetative tissues of Arabidopsis thaliana[J]. ThePlant Journal, 2003, 34(1): 107-114.
[10] Kikuchi A, Sanuki N, Higashi K, et al. Abscisic acid and stresstreatment are essential for the acquisition of embryogenic competenceby carrot somatic cells[J]. Planta, 2006, 223(4): 637-645.
[11] KiyosueT,TakanoK,KamadaH,etal.Inductionofsomatic embryogenesisin carrot by heavy metal ions[J]. Canadian Journal of Botany, 1990, 68(10): 2301-2303.
[12] Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473-497.
[13] Santarem E R, Pelissier B, Finer J J. Effect of explant orientation, pH,solidifying agent and wounding on initiation of soybean somaticembryos[J]. In Vitro Cellular & Developmental Biology-Plant, 1997, 33(1): 13-19.
[14] Suzuki N, Koussevitzky S, Mittler R O N, et al. ROS and redox signallingin the response of plants to abiotic stress[J]. Plant, Cell & Environment,2012, 35(2): 259-270.
[15] Brotman Y, Landau U, Cuadros-Inostroza Á, et al. Trichoderma-plantroot colonization: Escaping early plant defense responses andactivation of the antioxidant machinery for saline stress tolerance[J].PLoS Pathogens, 2013, 9(3): e1003221.
[16] Rai M K, Shekhawat N S, Gupta A K, et al. The role of abscisic acidin plant tissue culture: A review of recent progress[J]. Plant Cell,Tissue & Organ Culture, 2011, 106(2): 179-190.
[17] Abdel Latef A A . Changes of antioxidative enzymes in salinity toleranceamong different wheat cultivars[J]. Cereal Research Communications,2010, 38(1): 43-55.
[18] Melchiorre M, Robert G, Trippi V, et al. Superoxide dismutase andglutathione reductase overexpression in wheat protoplast: Photooxidativestress tolerance and changes in cellular redox state[J]. Plant Growthand Regulation, 2009, 57(1): 57-68.
[19] Selote D S, Khanna-Chopra R. Antioxidant response of wheat roots todrought acclimation[J]. Protoplasma, 2010, 245(1-4): 153-163.
[20] Zhang S G, Han S Y, Yang W H, et al. Changes in H2O2 content andantioxidant enzyme gene expression during the somatic embryogenesisof Larix leptolepis[J]. Plant Cell, Tissue & Organ Culture, 2010, 100(1): 21-29.
[21] Cutler A J, Saleem M, Wang H. Cereal protoplast recalcitrance[J]. InVitro Cellular & Developmental Biology-Plant, 1991, 27(3): 104-111.
[22] Iiyama K, Lam T B T, Stone B A. Covalent cross-links in the cell wall[J]. Plant Physiol, 1994, 104(2): 315-320.
[23] Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1997, 48(1): 251-275.
[24] Belmonte M F, Stasolla C. Applications of DL-buthionine-[S, R]-sulfoximine deplete cellular glutathione and improves white spruce(Picea glauca) somatic embryo development[J]. Plant Cell Reports,2007, 26(4): 517-523.
[25] Smagghe B J, Blervacq A S, Blassiau C, et al. Immunolocalization ofnon-symbiotic hemoglobins during somatic embryogenesis in chicory[J]. Plant Signaling and Behavior, 2007, 2(1): 43-49.
[26] Stasolla C, Belmonte M F, Tahir M, et al. Buthionine sulfoximine(BSO)-mediated improvement in cultured embryo quality in vitroentails changes in ascorbate metabolism, meristem development andembryo maturation[J]. Planta, 2008, 228(2): 255-272.
[27] Legrand S, Hendriks T, Hilbert J L, et al. Characterization of expressedsequence tags obtained by SSH during somatic embryogenesis inCichorium intybus L[J]. BMC Plant Biology 2007, 7(1): 27-38
[28] Gupta S D, Datta S. Antioxidant enzyme activities during in vitromorphogenesis of gladiolus and the effect of application of antioxidanton plant regeneration[J]. Biologia Plantarum, 2003, 47(2): 179-183.
[29] Libik M, Konieczny R, Pater B, et al. Differences in the activities ofsome antioxidant enzymes and in H2O2 content during rhizogenesisand somatic embryogenesis in callus cultures of the ice plant[J]. PlantCell Reports, 2005, 23(12): 834-841.
[30] Cui K R, Xing G S, Liu X M, et al. Effect of hydrogen peroxide onsomatic embryogenesis of Lycium barbarum L[J]. Plant Science, 1999,146(1): 9-16.
[31] Rajeswari V, Paliwal K. Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albiziaodoratissima L.f. (Benth) [J]. Acta Physiologiae Plantarum, 2008, 30(6): 825-832.
[32] Tian M, Gu Q, Zhu M Y. The involvement of hydrogen peroxide andantioxidant enzymes in the process of shoot organogenesis ofstrawberry callus[J]. Plant Science, 2003, 165(4): 701-707.
[33] Møller I M, Sweetlove L J. ROS signaling: Specificity is required[J].Trends in Plant Science, 2010, 15(7): 370-374.
[34] Huang W L, Lee C H, Chen Y R. Levels of endogenous abscisic acidand indole-3-acetic acid influence shoot organogenesis in calluscultures of rice subjected to osmotic stress[J]. Plant Cell, Tissue &Organ Culture, 2012, 108(2): 257-263.
[35] Jain R K, Jain S, Wu R. Stimulatory effect of water stress on plantregeneration in aromatic Indica rice varieties[J]. Plant Cell Reports,1996, 15(6): 449-454.
[36] Karami O, Deljou A, Esna-Ashari M, et al. Effect of sucroseconcentrations on somatic embryogenesis in carnation (Dianthuscaryophyllus L.)[J]. Scientia Horticulturae, 2006, 110(4): 340-344.
[37] Karami O, Deljou A, Kordestani G K. Secondary somatic embryogenesisof carnation (Dianthus caryophyllus) [J]. Plant Cell, Tissue & OrganCulture, 2008, 92(3): 273-280.
[38] You X L, Yi J S, Choi Y E. Cellular change and callose accumulationin zygotic embryos ofE leutherococcus senticosus caused by plasmolyzingpretreatment result in high frequency of single-cell-derived somaticembryogenesis[J]. Protoplasma, 2006, 227(2-4): 105-112.
[39] Lu C Y, Vasil V, Vasil I K. Improved efficiency of somatic embryogenesisand plant regeneration in tissue cultures of maize (Zea mays L.) [J].Theoretical and Applied Genetics, 1983, 66(3-4): 285-289.
[40] Wetherell D F. Enhanced adventive embryogenesis resulting fromplasmolysis of cultured wild carrot cells[J]. Plant Cell, Tissue &Organ Culture, 1984, 3(3): 221-227.
[41] Marty I, Brugidou C, Chartier Y, et al. Growth-related gene expressionin Nicotiana tabacum mesophyll protoplasts[J]. The Plant Journal,1993, 4(2): 265-278.
[42] Hammatt N, Davey M R. Somatic Embryogenesis and Plant Regenerationfrom Cultured Zygotic Embryos of Soybean[J]. Journal of PlantPhysiology, 1987, 128(3): 219-226.
[43] Rancé I, Tian W, Mathews H, et al. Partial desiccation of matureembryo-derived calli, a simple treatment that dramatically enhancesthe regeneration ability of Indica rice[J]. Plant Cell Reports, 1994, 13(11): 647-651.
[44] Tsukahara M, Hirosawa T. Simple dehydration treatment promotesplantlet regeneration of rice (Oryza sativa L.) callus[J]. Plant CellReports, 1992, 11(11): 550-553.
[45] Brown C, Brooks F J, Pearson D, et al. Control of embryogenesis andorganogenesis in immature wheat embryo callus using increasedmedium osmolarity and abscisic acid[J]. Journal of Plant Physiology,1989, 133(6): 727-733.
[46] Kavi Kishor P B, Reddy G M. Retention and revival of regeneratingability by osmotic adjustment in long-term cultures of four varieties ofrice[J]. Journal of Plant Physiology, 1986, 126(1): 49-54.
[47] Ryschka S, Ryschka U, Schulze J. Anatomical studies on the developmentof somatic embryoids in wheat and barley explants[J]. Biochemie undPhysiologie der Pflanzen, 1991, 187(1): 31-41.
[48] Kumria R, Sunnichan V G, Das D K, et al. High-frequency somaticembryo production and maturation into normal plants in cotton(Gossypium hirsutum) trough metabolic stress[J]. Plant Cell Reports,2003, 21(7): 635-639.
[49] Grosset J, Marty I, Chartier Y, et al. mRNAs newly synthesized bytobacco mesophyll protoplasts are wound-inducible[J]. PlantMolecular Biology, 1990, 15(3): 485-496.
[50] Bommineni V R, Jauhar P P. Regeneration of plantlets through isolatedscutellum culture of durum wheat[J]. Plant Science, 1996, 116(2):197-203.
[51] Fellers J P, Guenzi A C, Taliaferro C M. Factors affecting theestablishment and maintenance of embryogenic callus and suspensioncultures of wheat (Triticum aestivum L.)[J]. Plant Cell Reports, 1995,15(3/4): 232-237.
[52] Rodrignez-Sotres R, Black M. Osmotic potential and abscisic acidregulate triacylglycerol synthesis in developing wheat embryos[J].Planta, 1993, 192(1): 9-15.
[53] Cheong Y H, Chang H S, Gupta R, et al. Transcriptional profilingreveals novel interactions between wounding, pathogen, abiotic stress,and hormonal responses in Arabidopsis[J]. Plant Physiology, 2002, 129(2): 661-677.
[54] Nadolska-Orczyk A, Orczyk W. New aspects of soybean somaticembryogenesis[J]. Euphytica, 1994, 80(1/2): 137-143.
[55] Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation inhigher plants[J]. Annual Review of Plant Physiology, 1984, 35(1): 155-189.
[56] Jamet E, Durr A, Parmentier Y, et al. Is ubiquitin involved in thededifferentiation of higher plant cells?[J]. Cell Differentiation andDevelopment, 1990, 29(1): 37-46.
[57] Criqui M C, Jamet E, Parmentier Y, et al. Isolation and characterizationof a plant cDNA showing homologies to animal glutathione peroxidases[J]. Plant Molecular Biology, 1992, 18(3): 623-627.
[58] Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcriptionfactor WIND1 controls cell dedifferentiation in Arabidopsis[J]. CurrentBiology, 2011, 21(6): 508-514.
[59] Kamada H, Tachikawa Y, Saitou T, et al. Heat stress induction ofcarrot somatic embryogenesis[J]. Plant Tissue Culture Letters, 1994, 11(3): 229-232.
[60] Pechan P M, Keller W A. Identification of potentially embryogenicmicrospores in Brassica napus [J]. Physiologia Plantarum, 1988, 74(2):377-384.
[61] Györgyey J, Gartner A, Németh K, et al. Alfalfa heat shock genes aredifferentially expressed during somatic embryogenesis[J]. PlantMolecular Biology, 1991, 16(6): 999-1007.
[62] Howarth C. Heat shock proteins in S orghum bicolor and Pennisetumamericanum II. Stored RNA in sorghum seed and its relationship toHSP synthesis during germination[J]. Plant, Cell & Environment,1990, 13(1): 57-64.
[63] Zimmermann J L, Apuya N, Darwish K, et al. Novel regulation of heatshock genes during carrot somatic embryo development[J]. The PlantCell, 1989, 1(12): 1137-1146.
[64] Ellis R J. Molecular chaperones: The plant connection[J]. Science,1990, 250(4983): 954-959.
[65] Kvaalen H, Johnsen Ø. Timing of bud set in Picea abies is regulatedby a memory of temperature during zygotic and somatic embryogenesis[J]. New Phytologist, 2008, 177(1): 49-59.
[66] Asaka I, Li I, Yoshikawa T, et al. Embryoid formation by hightemperature treatment from multiple shoots of Panax ginseng[J].Planta Medica, 1993, 59(4): 345-346.
[67] Ilahi I, Ghauri E G. Regeneration in cultures of Papaver bracteatumas influenced by growth hormones and temperature[J]. Plant Cell,Tissue & Organ Culture, 1994, 38(1): 81-83.
[68] Yin G X, Wang Y L, She M Y, et al. Establishment of a highly efficientregeneration system for the mature embryo culture of wheat[J].Agricultural Sciences in China, 2011, 10(1): 9-17.
文章导航

/