专题论文

肿瘤热疗超声无创监测技术研究进展

  • 周著黄 ,
  • 吴薇薇 ,
  • 吴水才 ,
  • 杨春兰 ,
  • 林仲志 ,
  • 崔博翔
展开
  • 1. 北京工业大学生命科学与生物工程学院, 北京100124;
    2. 北京工业大学电子信息与控制工程学院, 北京100124;
    3. 长庚大学资讯工程系, 中国台湾333;
    4. 长庚大学医学院医学影像暨放射科学系, 中国台湾333
周著黄,博士研究生,研究方向为肿瘤热疗超声无创监测,电子信箱:zhouzhuhuang@126.com;

收稿日期: 2014-08-13

  修回日期: 2014-08-15

  网络出版日期: 2014-11-14

基金资助

北京工业大学博士生创新奖学金;国家自然科学基金项目(81127006)

Recent Advances in Noninvasive Ultrasound Monitoring of Thermal Therapy for Tumors

  • ZHOU Zhuhuang ,
  • WU Weiwei ,
  • WU Shuicai ,
  • YANG Chunlan ,
  • LIN ChungChih ,
  • TSUI PoHsiang
Expand
  • 1. College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China;
    2. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
    3. Department of Computer Science and Information Engineering, Chang Gung University, Taiwan 333, China;
    4. Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taiwan 333, China

Received date: 2014-08-13

  Revised date: 2014-08-15

  Online published: 2014-11-14

摘要

肿瘤热疗是用加热方式杀死癌细胞,已成为肿瘤治疗的一种重要手段.肿瘤热疗分为传统热疗(41~45℃)和热消融治疗(>60℃).在肿瘤热疗中,对治疗区组织温度及热凝固区进行无创测控是保证热疗安全和提高疗效的关键,本文综述肿瘤热疗超声无创测温及热凝固区检测技术的研究进展.超声无创测温主要基于声速和热膨胀、超声衰减系数、背向散射能量、B 超图像纹理等参数的温度相关性.热凝固区超声检测主要基于超声组织定征技术,包括Nakagami 统计模型、超声衰减、超声背向散射积分、超声弹性成像、组织散射子平均间距、次谐波低频声发射等.提出了肿瘤热疗超声无创监测技术的未来发展方向,包括监测精度验证方法的研究、针对组织个体差异自适应调整参数的研究、减少组织运动干扰的方法研究、多维多参数监测方法研究、实时计算技术的研究及肿瘤热疗实验数据共享中心的建立.

关键词: 肿瘤; 热疗; 超声; 无论监测

本文引用格式

周著黄 , 吴薇薇 , 吴水才 , 杨春兰 , 林仲志 , 崔博翔 . 肿瘤热疗超声无创监测技术研究进展[J]. 科技导报, 2014 , 32(30) : 19 -24 . DOI: 10.3981/j.issn.1000-7857.2014.30.002

Abstract

Thermal therapy is a technique to kill tumor cells with heat and has become an important means for tumor treatment. It can be divided into conventional hyperthermia (41-45℃) and thermal ablation (>60℃). For thermal therapy, noninvasive monitoring of tissue temperature distribution and thermal lesion (coagulation zone) formation in the treatment area is the key to guaranteeing treatment safety and efficacy. In this review, recent advances in noninvasive ultrasound-based temperature estimation and thermal lesion detection techniques are presented. Noninvasive ultrasound temperature estimation is based on temperature dependence of such parameters as speed of sound and thermal expansion, ultrasound attenuation coefficient, backscattered energy, and B-mode ultrasound image texture feature. Noninvasive ultrasonic thermal lesion detection is based on ultrasound tissue characterization techniques. These techniques include the Nakagami statistical model, ultrasound attenuation, integrated backscatter, ultrasound elasticity imaging, mean scatterer spacing, and low-frequency acoustic emission. Future developments of noninvasive ultrasound monitoring techniques for thermal therapy are discussed. Future work may include the study of monitoring precision validation, adaptive parameter adjustment for tissue interindividual difference, reducing tissue movement interference, multi-dimensional and multi-parameter monitoring, realtime computing, and the establishment of the thermal therapy experimental data center.

参考文献

[1] Arthur R M, Straube W L, Trobaugh J W, et al. Non-invasive estimation of hyperthermia temperatures with ultrasound[J]. International Journal of Hyperthermia, 2005, 21(6): 589-600.
[2] Liu D, Ebbini E S. Real-time 2-D temperature imaging using ultrasound[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(1): 12-16.
[3] Huang C W, Lien D H, Chen B T, et al. Ultrasound thermal mapping based on a hybrid method combining cross- correlation and zerocrossing tracking[J]. Journal of the Acoustical Society of America, 2013, 134(2): 1530-1540.
[4] Chen B T, Shieh J, Huang C W, et al. Ultrasound thermal mapping based on a hybrid method combining physical and statistical models[J]. Ultrasound in Medicine & Biology, 2014, 40(1): 115-129.
[5] Sheng L, Zhou Z H, Wu S C, et al. Study frequency shift evaluation of ultrasound in heating fields of hyperthermia by AR model[J]. APCBEE Procedia, 2013, 7: 138-144.
[6] Pouch A M, Cary T W, Schultz S M, et al. In vivo noninvasive temperature measurement by B-mode ultrasound imaging[J]. Journal of Ultrasound in Medicine, 2010, 29(11): 1595-1606.
[7] Varghese T, Zagzebski J A, Chen Q, et al. Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary invivo results[J]. Ultrasound in Medicine & Biology, 2002, 28(3): 321- 329.
[8] Daniels M J, Varghese T. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation[J]. Physics in Medicine and Biology, 2010, 55(16): 4735-4753.
[9] 李硕, 任稆平, 杨春兰, 等. 基于超声回波时移测温方法的研究[J]. 中国医疗设备, 2009, 24(12): 12-14. Li Shuo, Ren Lüping, Yang Chunlan, et al. Study of thermometry based on time shift of ultrasound echo[J]. Journal Press of China Medical Devices, 2009, 24(12): 12-14.
[10] Shung K K. Diagnostic ultrasound: Imaging and blood flow measurements[M]. Boca Raton: CRC Press, 2005.
[11] Damianou C A, Sanghvi N T, Fry F J, et al. Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose[J]. Journal of the Acoustical Society of America, 1997, 102(1): 628-633.
[12] Techavipoo U, Varghese T, Chen Q, et al. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses[J]. Journal of the Acoustical Society of America, 2004, 115(6): 2859-2865.
[13] 吴薇薇, 任稆平, 吴水才. 微波热疗组织超声衰减系数的温度相关性研究[J]. 中国医疗设备, 2010, 25(4): 15-17. Wu Weiwei, Ren Lüping, Wu Shuicai. Study on the temperature correlation of ultrasonic attenuation coefficient in microwave hyperthermia[J]. Journal Press of China Medical Devices, 2010, 25(4): 15-17.
[14] Arthur R M, Basu D, Guo Y, et al. 3- D in vitro estimation of temperature using the change in backscattered ultrasonic energy[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(8): 1724-1733.
[15] Tsui P H, Chien Y T, Liu H L, et al. Using ultrasound CBE imaging without echo shift compensation for temperature estimation[J]. Ultrasonics, 2012, 52(7): 925-935.
[16] Xia J, Li Q, Liu H L, et al. An approach for the visualization of temperature distribution in tissues according to changes in ultrasonic backscattered energy[J]. Computational and Mathematical Methods in Medicine, 2013: 682827.
[17] Alvarenga A V, Teixeira C A, Ruano M G, et al. Influence of temperature variations on the entropy and correlation of the grey-level co-occurrence Matrix from B-Mode images[J]. Ultrasonics, 2010, 50(2): 290-293.
[18] Yang C, Zhu H, Wu S, et al. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation[J]. Journal of Ultrasound in Medicine, 2010, 29(12): 1787-1799.
[19] 盛磊, 周著黄, 吴水才, 等. 热消融组织B超图像纹理特征参数温度相关性[J]. 北京工业大学学报, 2013, 39(8): 1275-1280. Sheng Lei, Zhou Zhuhuang, Wu Shuicai, et al. Correlations between B-mode ultrasound image texture features and tissue temperature in hyperthermia[J]. Journal of Beijing University of Technology, 2013, 39 (8): 1275-1280.
[20] van Dongen K W A, Verweij M D. A feasibility study for non-invasive thermometry using non- linear ultrasound[J]. International Journal of Hyperthermia, 2011, 27(6): 612-624.
[21] Tsui P H, Shu Y C, Chen W S, et al. Ultrasound temperature estimation based on probability variation of backscatter data[J]. Medical Physics, 2012, 39(5): 2369-2385.
[22] Mulvana H, Stride E, Hajnal J V, et al. Temperature dependent behavior of ultrasound contrast agents[J]. Ultrasound in Medicine & Biology, 2010, 36(6): 925-934.
[23] Sapin- de Brosses E, Gennisson J L, Pernot M, et al. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound[J]. Physics in Medicine and Biology, 2010, 55(6): 1701-1718.
[24] Arnal B, Pernot M, Tanter M. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2011, 58(2): 369-378.
[25] Ye G, Smith P P, Noble J A. Model-based ultrasound temperature visualization during and following HIFU exposure[J]. Ultrasound in Medicine & Biology, 2010, 36(2): 234-249.
[26] Wang C Y, Geng X, Yeh T S, et al. Monitoring radiofrequency ablation with ultrasound Nakagami imaging[J]. Medical Physics, 2013, 40(7): 072901.
[27] Zhang S, Zhou F, Wan M, et al. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions[J]. Journal of the Acoustical Society of America, 2012, 131(6):4836-4844.
[28] Zhong H, Wan M X, Jiang Y F, et al. Monitoring imaging of lesions induced by high intensity focused ultrasound based on differential ultrasonic attenuation and integrated backscatter estimation[J]. Ultrasound in Medicine & Biology, 2007, 33(1): 82-94.
[29] Zhang D, Zhang S, Wan M, et al. A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection[J]. Ultrasonics, 2011, 51(8): 857-869.
[30] 罗建文, 丁楚雄, 白净, 等. 超声弹性成像用于高强度聚焦超声损伤的检测[J]. 北京生物医学工程, 2006, 25(3): 235-239. Luo Jianwen, Ding Chuxiong, Bai Jing, et al. Ultrasound elastography applied to the detection of HIFU-induced lesions[J]. Beijing Biomedical Engineering, 2006, 25(3): 235-239.
[31] Jiang J, Brace C, Andreano A, et al. Ultrasound-based relative elastic modulus imaging for visualizing thermal ablation zones in a porcine model[J]. Physics in Medicine and Biology, 2010, 55(8): 2281-2306.
[32] Hou G Y, Luo J, Marquet F, et al. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): A 3-D finite-element-based framework with experimental validation[J]. Ultrasound in Medicine & Biology, 2011, 37(12): 2013- 2027.
[33] Eyerly S A, Hsu S J, Agashe S H, et al. An in vitro assessment of acoustic radiation force impulse imaging for visualizing cardiac radiofrequency ablation lesions[J]. Journal of Cardiovascular Electrophysiology, 2010, 21(5): 557-563.
[34] Arnal B, Pernot M, Tanter M. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2011, 58(8): 1603-1611.
[35] DeWall R J, Varghese T, Brace C L. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography[J]. Medical physics, 2012, 39(11): 6692.
[36] Zhou Z, Sheng L, Wu S, et al. Ultrasonic evaluation of microwaveinduced thermal lesions based on wavelet analysis of mean scatterer spacing[J]. Ultrasonics, 2013, 53(7): 1325-1331.
[37] Winkler I, Adam D. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions-In vitro and in vivo study[J]. Ultrasound in Medicine & Biology, 2011, 37(5): 755-767.
[38] Lu M, Yu X, Li A, et al. Comparison of contrast enhanced ultrasound and contrast enhanced CT or MRI in monitoring percutaneous thermal ablation procedure in patients with hepatocellular carcinoma: A multicenter study in China[J]. Ultrasound in Medicine & Biology, 2007, 33 (11): 1736-1749.
[39] Varghese T, Techavipoo U, Zagzebski J A, et al. Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions[J]. Journal of Ultrasound in Medicine, 2004, 23 (4): 535-544.
[40] Seror O, Lepetit-Coiffé M, Le Bail B, et al. Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo[J]. European Radiology, 2008, 18(2): 408-416.
[41] Seo C H, Shi Y, Huang S W, et al. Thermal strain imaging: a review[J]. Interface Focus, 2011, 1(4): 649-664.
[42] Liu H L, Li M L, Tsui P H, et al. A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy[J]. Physics in Medicine and Biology, 2011, 56(1): 169-186.
[43] 耿晓楠, 李锵, 崔博翔, 等. 超声温度影像与弹性成像监控组织射频消融[J]. 南方医科大学学报, 2013, 33(9): 1289-1294. GengXiaonan,LiQiang,TsuiPo-Hsiang,etal.Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities[J]. Journal of Southern Medical University, 2013, 33(9): 1289-1294.
文章导航

/