[1] Arthur R M, Straube W L, Trobaugh J W, et al. Non-invasive estimation of hyperthermia temperatures with ultrasound[J]. International Journal of Hyperthermia, 2005, 21(6): 589-600.
[2] Liu D, Ebbini E S. Real-time 2-D temperature imaging using ultrasound[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(1): 12-16.
[3] Huang C W, Lien D H, Chen B T, et al. Ultrasound thermal mapping based on a hybrid method combining cross- correlation and zerocrossing tracking[J]. Journal of the Acoustical Society of America, 2013, 134(2): 1530-1540.
[4] Chen B T, Shieh J, Huang C W, et al. Ultrasound thermal mapping based on a hybrid method combining physical and statistical models[J]. Ultrasound in Medicine & Biology, 2014, 40(1): 115-129.
[5] Sheng L, Zhou Z H, Wu S C, et al. Study frequency shift evaluation of ultrasound in heating fields of hyperthermia by AR model[J]. APCBEE Procedia, 2013, 7: 138-144.
[6] Pouch A M, Cary T W, Schultz S M, et al. In vivo noninvasive temperature measurement by B-mode ultrasound imaging[J]. Journal of Ultrasound in Medicine, 2010, 29(11): 1595-1606.
[7] Varghese T, Zagzebski J A, Chen Q, et al. Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary invivo results[J]. Ultrasound in Medicine & Biology, 2002, 28(3): 321- 329.
[8] Daniels M J, Varghese T. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation[J]. Physics in Medicine and Biology, 2010, 55(16): 4735-4753.
[9] 李硕, 任稆平, 杨春兰, 等. 基于超声回波时移测温方法的研究[J]. 中国医疗设备, 2009, 24(12): 12-14. Li Shuo, Ren Lüping, Yang Chunlan, et al. Study of thermometry based on time shift of ultrasound echo[J]. Journal Press of China Medical Devices, 2009, 24(12): 12-14.
[10] Shung K K. Diagnostic ultrasound: Imaging and blood flow measurements[M]. Boca Raton: CRC Press, 2005.
[11] Damianou C A, Sanghvi N T, Fry F J, et al. Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose[J]. Journal of the Acoustical Society of America, 1997, 102(1): 628-633.
[12] Techavipoo U, Varghese T, Chen Q, et al. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses[J]. Journal of the Acoustical Society of America, 2004, 115(6): 2859-2865.
[13] 吴薇薇, 任稆平, 吴水才. 微波热疗组织超声衰减系数的温度相关性研究[J]. 中国医疗设备, 2010, 25(4): 15-17. Wu Weiwei, Ren Lüping, Wu Shuicai. Study on the temperature correlation of ultrasonic attenuation coefficient in microwave hyperthermia[J]. Journal Press of China Medical Devices, 2010, 25(4): 15-17.
[14] Arthur R M, Basu D, Guo Y, et al. 3- D in vitro estimation of temperature using the change in backscattered ultrasonic energy[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(8): 1724-1733.
[15] Tsui P H, Chien Y T, Liu H L, et al. Using ultrasound CBE imaging without echo shift compensation for temperature estimation[J]. Ultrasonics, 2012, 52(7): 925-935.
[16] Xia J, Li Q, Liu H L, et al. An approach for the visualization of temperature distribution in tissues according to changes in ultrasonic backscattered energy[J]. Computational and Mathematical Methods in Medicine, 2013: 682827.
[17] Alvarenga A V, Teixeira C A, Ruano M G, et al. Influence of temperature variations on the entropy and correlation of the grey-level co-occurrence Matrix from B-Mode images[J]. Ultrasonics, 2010, 50(2): 290-293.
[18] Yang C, Zhu H, Wu S, et al. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation[J]. Journal of Ultrasound in Medicine, 2010, 29(12): 1787-1799.
[19] 盛磊, 周著黄, 吴水才, 等. 热消融组织B超图像纹理特征参数温度相关性[J]. 北京工业大学学报, 2013, 39(8): 1275-1280. Sheng Lei, Zhou Zhuhuang, Wu Shuicai, et al. Correlations between B-mode ultrasound image texture features and tissue temperature in hyperthermia[J]. Journal of Beijing University of Technology, 2013, 39 (8): 1275-1280.
[20] van Dongen K W A, Verweij M D. A feasibility study for non-invasive thermometry using non- linear ultrasound[J]. International Journal of Hyperthermia, 2011, 27(6): 612-624.
[21] Tsui P H, Shu Y C, Chen W S, et al. Ultrasound temperature estimation based on probability variation of backscatter data[J]. Medical Physics, 2012, 39(5): 2369-2385.
[22] Mulvana H, Stride E, Hajnal J V, et al. Temperature dependent behavior of ultrasound contrast agents[J]. Ultrasound in Medicine & Biology, 2010, 36(6): 925-934.
[23] Sapin- de Brosses E, Gennisson J L, Pernot M, et al. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound[J]. Physics in Medicine and Biology, 2010, 55(6): 1701-1718.
[24] Arnal B, Pernot M, Tanter M. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2011, 58(2): 369-378.
[25] Ye G, Smith P P, Noble J A. Model-based ultrasound temperature visualization during and following HIFU exposure[J]. Ultrasound in Medicine & Biology, 2010, 36(2): 234-249.
[26] Wang C Y, Geng X, Yeh T S, et al. Monitoring radiofrequency ablation with ultrasound Nakagami imaging[J]. Medical Physics, 2013, 40(7): 072901.
[27] Zhang S, Zhou F, Wan M, et al. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions[J]. Journal of the Acoustical Society of America, 2012, 131(6):4836-4844.
[28] Zhong H, Wan M X, Jiang Y F, et al. Monitoring imaging of lesions induced by high intensity focused ultrasound based on differential ultrasonic attenuation and integrated backscatter estimation[J]. Ultrasound in Medicine & Biology, 2007, 33(1): 82-94.
[29] Zhang D, Zhang S, Wan M, et al. A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection[J]. Ultrasonics, 2011, 51(8): 857-869.
[30] 罗建文, 丁楚雄, 白净, 等. 超声弹性成像用于高强度聚焦超声损伤的检测[J]. 北京生物医学工程, 2006, 25(3): 235-239. Luo Jianwen, Ding Chuxiong, Bai Jing, et al. Ultrasound elastography applied to the detection of HIFU-induced lesions[J]. Beijing Biomedical Engineering, 2006, 25(3): 235-239.
[31] Jiang J, Brace C, Andreano A, et al. Ultrasound-based relative elastic modulus imaging for visualizing thermal ablation zones in a porcine model[J]. Physics in Medicine and Biology, 2010, 55(8): 2281-2306.
[32] Hou G Y, Luo J, Marquet F, et al. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): A 3-D finite-element-based framework with experimental validation[J]. Ultrasound in Medicine & Biology, 2011, 37(12): 2013- 2027.
[33] Eyerly S A, Hsu S J, Agashe S H, et al. An in vitro assessment of acoustic radiation force impulse imaging for visualizing cardiac radiofrequency ablation lesions[J]. Journal of Cardiovascular Electrophysiology, 2010, 21(5): 557-563.
[34] Arnal B, Pernot M, Tanter M. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2011, 58(8): 1603-1611.
[35] DeWall R J, Varghese T, Brace C L. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography[J]. Medical physics, 2012, 39(11): 6692.
[36] Zhou Z, Sheng L, Wu S, et al. Ultrasonic evaluation of microwaveinduced thermal lesions based on wavelet analysis of mean scatterer spacing[J]. Ultrasonics, 2013, 53(7): 1325-1331.
[37] Winkler I, Adam D. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions-In vitro and in vivo study[J]. Ultrasound in Medicine & Biology, 2011, 37(5): 755-767.
[38] Lu M, Yu X, Li A, et al. Comparison of contrast enhanced ultrasound and contrast enhanced CT or MRI in monitoring percutaneous thermal ablation procedure in patients with hepatocellular carcinoma: A multicenter study in China[J]. Ultrasound in Medicine & Biology, 2007, 33 (11): 1736-1749.
[39] Varghese T, Techavipoo U, Zagzebski J A, et al. Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions[J]. Journal of Ultrasound in Medicine, 2004, 23 (4): 535-544.
[40] Seror O, Lepetit-Coiffé M, Le Bail B, et al. Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo[J]. European Radiology, 2008, 18(2): 408-416.
[41] Seo C H, Shi Y, Huang S W, et al. Thermal strain imaging: a review[J]. Interface Focus, 2011, 1(4): 649-664.
[42] Liu H L, Li M L, Tsui P H, et al. A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy[J]. Physics in Medicine and Biology, 2011, 56(1): 169-186.
[43] 耿晓楠, 李锵, 崔博翔, 等. 超声温度影像与弹性成像监控组织射频消融[J]. 南方医科大学学报, 2013, 33(9): 1289-1294. GengXiaonan,LiQiang,TsuiPo-Hsiang,etal.Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities[J]. Journal of Southern Medical University, 2013, 33(9): 1289-1294.