燃煤汞排放是全球汞污染的重要人为排放源,中国能源结构以煤为主的格局在今后相当长的时期内难以改变,因此对燃煤过程开展汞污染监测及控制迫在眉睫.本文分析了中国燃煤汞污染排放特征、现状及标准,论述了燃煤烟气中汞的监测技术和汞污染控制技术,探讨了今后燃煤烟气中汞监测及控制技术的发展.认为,在监测技术方面,需要开发长期稳定运行的高精度、高可靠性且价格低廉的仪器,方便中国更多排放源的监测;另外由于中国燃煤高灰、高湿度的特点,需要针对中国燃煤条件开发抗干扰性能强的测试仪器.控制技术方面,应加强协同控制技术的研发,掌握各个环节中化学条件的变化;加强吸附剂喷射技术的研发,开发高效低成本的吸附剂.
Changing China's energy production and consumption habits has been difficult for a long time, and in a foreseeable future, coal will continue to be the major sector in the production of electricity. Mercury emission during coal combustion is a major anthropogenic source contributing to global mercury emissions. Thus, it is important to monitor and control mercury emissions during coal combustion. In this paper, mercury emission, measurement, and control technologies for coal fired power plants in China are discussed. The development of future mercury monitoring systems and controlling technologies is also addressed. On the aspect of monitoring, it is suggested that high-precision, high-reliability, and low-cost instruments should be developed to meet the need of mercury emission sources in China. On the other hand, the instrument should also be able to handle the high ash and high moisture flue gases typically found in Chinese coal fired power plants.
[1] Norrby L J. Why is mercury liquid? Or, why do relativistic effects not getinto chemistry textbooks?[J]. Journal of Chemical Education, 1991, 68(2):110.
[2] Clifton I I, Jack C. Mercury exposure and public health[J]. PediatricClinics of North America, 2007, 54(2): 237.
[3] UNEP. Global mercury assessment 2013: Sources, emissions, releasesand environmental transport[R]. Geneva, Switzerland: UNEP ChemicalsBranch, 2013.
[4] Streets D G, Hao J, Wu Y, et al. Anthropogenic mercury emissions inChina[J]. Atmospheric Environment, 2005, 39(40): 7789-7806.
[5] 中电联规划与统计信息部. 2012 年电力统计基本数据一览表[EB/OL]. [2013-11-07]. http://www.cec.org.cn/guihuayutongji/tongjxinxi/niandushuju/2013-11-07/111737.html.China Electric Council. Statistical data list of electric power in 2012.[EB/OL]. [2013-11-07]. http://www.cec.org.cn/guihuayutongji/tongjxinxi/niandushuju/2013-11-07/111737.html.
[6] AnnualEnergyOutlook.Energyinformationadministration[R]. Washington,DC: US Energy Information Administration, 2014.
[7] 郑楚光, 张军营, 赵永椿, 等. 煤燃烧汞的排放及控制[M]. 北京: 科学出版社, 2010.Zheng Chuguang, Zhang Junying, Zhao Yongchun, et al. Emission andcontrol of mercury from coal combustion[M]. Beijing: Science Press, 2010.
[8] Chu P, Porcella D B. Mercury stack emissions from US electric utilitypower plants[J]. Water, Air, and Soil Pollution, 1995, 80(1-4): 135-144.
[9] Meij R. The fate of mercury in coal-fired power plants and the influenceof wet flue-gas desulphurization[J]. Water Air & Soil Pollution, 1991, 56(1): 21-33.
[10] Wilcox J, Rupp E, Ying S C, et al. Mercury adsorption and oxidation incoal combustion and gasification processes[J]. International Journal ofCoal Geology, 2012, 90: 4-20.
[11] Carpi A. Mercury from combustion sources: a review of the chemicalspecies emitted and their transport in the atmosphere[J]. Water, Air, andSoil Pollution, 1997, 98(3/4): 241-254.
[12] 武成利, 曹晏, 董众兵, 等. 燃煤电厂烟气中汞的监测方法评价[J]. 环境与健康杂志, 2010(3): 270-271.Wu Chengli, Cao Yan, Dong Zhongbing, et al. Coal-fired power plantflue gas mercury monitoring method evaluation[J]. Journal of Environmentand Health, 2010(3): 270-271.
[13] 管一明, 王宏亮, 许月阳, 等. 燃煤电厂烟气中汞的采样与分析方法[J]. 环境监控与预警, 2012, 4(2): 16-19.Guan Yiming, Wang Hongliang, Xu Yueyang, et al. Sampling andanalysis method of mercury in flue gas of coal- fired power plant[J].Environmental Monitoring and Forewarning, 2012, 4(2): 16-19.
[14] 陶叶. 火电机组汞排放的监测方法[J]. 中国电力, 2011, 44(8): 48-52.Tao Ye. Monitoring method of mercury emission from thermal power units[J]. Electric Power, 2011, 44(8): 48-52.
[15] 刘迎晖, 郑楚光, 程俊峰, 等. 燃煤烟气中汞的形态及其分析方法[J].燃料化学学报, 2000, 28(5): 463-467.Liu Yinghui, Zheng Chuguang, Chen Junfeng, et al. Speciation andanalysis of mercury in coal combustion flue gas[J]. Journal of FuelChemistry and Technology, 2000, 28(5): 463-467.
[16] Saleh R Y, Wachs I E, Chan S S, et al. The interaction of V2O5 with TiO2 (anatase): Catalyst evolution with calcination temperature and O-xyleneoxidation[J]. Journal of Catalysis, 1986, 98(1): 102-114.
[17] Laudal D L, Thompson J S, Pavlish J H, et al. Use of continuous mercurymonitors at coal-fired utilities[J]. Fuel Processing Technology, 2004, 85(6): 501-511.
[18] Cheng C M, Lin H T, Wang Q, et al. Experiences in long- termevaluation of mercury emission monitoring systems[J]. Energy & Fuels,2008, 22(5): 3040-3049.
[19] Cheng C M, Chen C W, Zhu J, et al. Measurement of vapor phasemercury emissions at coal- fired power plants using regular andspeciating sorbent traps with in-stack and out-of-stack samplingmethods[J]. Energy & Fuels, 2009, 23(10): 4831-4839.
[20] Toole-O'NeilB,TewaltSJ,FinkelmanRB,etal.Mercury concentration incoal-unraveling the puzzle[J]. Fuel, 1999, 78(1): 47-54.
[21] Cheng C M, Cao Y, Kai Z, et al. Co-effects of sulfur dioxide load andoxidation air on mercury re-emission in forced-oxidation limestone fluegas desulfurization wet scrubber[J]. Fuel, 2013, 106: 505-511.
[22] 中国经济信息网. 中国煤炭行业分析报告[R/OL]. 2011.China Economic Information Network. China coal industry analysis report[R/0L]. 2011.