专题论文

基于光纤链路的高精度时间频率传输与同步

  • 高超 ,
  • 王波 ,
  • 白钰 ,
  • 苗菁 ,
  • 朱玺 ,
  • 李天初 ,
  • 王力军
展开
  • 1. 清华大学精密测量联合实验室, 北京 100084;
    2. 清华大学精密仪器与机械学系, 精密测试技术及仪器国家重点实验室, 北京 100084;
    3. 清华大学物理系, 北京 100084;
    4. 中国计量科学研究院, 北京 100013
高超,博士后,研究方向为时间频率同步与应用,电子信箱:chao_gao@126.com

收稿日期: 2014-09-25

  修回日期: 2014-10-30

  网络出版日期: 2014-12-17

基金资助

国家重大科学仪器设备开发专项(N2013YQ09094303);北京市高等学校优秀青年人才基金项目(YETP0088)

Fiber Based Time and Frequency Synchronization System

  • GAO Chao ,
  • WANG Bo ,
  • BAI Yu ,
  • MIAO Jing ,
  • ZHU Xi ,
  • LI Tianchu ,
  • WANG Lijun
Expand
  • 1. Joint Institute for Measurement Science, Tsinghua University, Beijing 100084, China;
    2. State Key Laboratory of Precision Measurement Technology and Instrument; Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China;
    3. Department of Physics, Tsinghua University, Beijing 100084, China;
    4. National Institute of Metrology, Beijing 100013, China

Received date: 2014-09-25

  Revised date: 2014-10-30

  Online published: 2014-12-17

摘要

在清华大学与中国计量科学研究院之间往返80 km 的商用光纤链路上进行了时间频率同时传输与同步实验.采用时间频率同时传输与同步的方法,获得了7×10-15/s,5×10-19/d 的频率传输稳定度结果;通过在发射端主动探测并补偿时间脉冲信号在光纤中传输的时间延迟,实现了±50 ps 的时间同步稳定度指标.鉴于目前基于光纤链路的频率传输方案均受限于点对点传输的问题,设计并完成了可多点下载的频率接收系统,使时间频率传输与同步网络的建设成为可能.

本文引用格式

高超 , 王波 , 白钰 , 苗菁 , 朱玺 , 李天初 , 王力军 . 基于光纤链路的高精度时间频率传输与同步[J]. 科技导报, 2014 , 32(34) : 41 -46 . DOI: 10.3981/j.issn.1000-7857.2014.34.005

Abstract

The continuous, precise time and frequency synchronization system was built on an 80 km single urban fiber link, between Tsinghua University and the National Institute of Metrology. Through precise time and frequency synchronization, the frequency dissemination stability of 7×10-15/s and 5×10-19/d was obtained; with active transfer delaycompensation at the transmitting site, the time synchronization inaccuracy was < 50 ps. For the current fiber based frequency dissemination schemes, the disseminated frequencysignal can only be recovered at specific location. A multiple-access RF dissemination scheme was proposed and demonstrated. Using this method, the stable disseminatedfrequency signal can be recovered at an arbitrary node along theentire fiber pathway, which provides a solution for the time-frequency synchronization network in the future.

参考文献

[1] Bauch A, Achkar J, Bize S, et al. Comparison between frequency standards in Europe and USA at the 10-15 uncertainty level[J]. Metrologia, 2006, 43 (1): 109-120.
[2] Levine J. A review of time and frequency transfer methods[J]. Metrologia, 2008, 45(6): 162-174.
[3] Michito I, Mizuhiko H, Kuniyasu I, et al. Two-way satellite time and frequency transfer networks in pacific rim region[J]. IEEE Transactions on Instruments Measurement, 2001, 50(2): 559-562.
[4] Allan D W, Weiss M A. Accurate time and frequency transfer during common-view of a GPS satellite[C]. 34th Annual Frequency Control Symposium, Fort Monmouth, New Jersey, USA, May 28-30, 1980.
[5] Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division[J]. Nature Photonics, 2011, 5: 425-429.
[6] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16 level laser stabilization[J]. Nature Photonics, 2011, 5: 158-161.
[7] Ludlow A D, Zelevinsky T, Campbell G K, et al. Sr lattice clock at 1× 10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808.
[8] Hong F L, Musha M, Takamoto M, et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer[J]. Optics Letters, 2009, 34(5): 692-694.
[9] Predehl K, Grosche G, Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.
[10] Foreman S M, Ludlow A D, Miranda M H G, et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17[J]. Physical Review Letters, 2007, 99(15): 153601.
[11] Williams P A, Swann W C, Newbury N R. High-stability transfer of an optical frequency over long fiber-optic links[J]. Journal of the Optical Society of America B, 2008, 25(8): 1284-1293.
[12] Jiang H, Kéfélian F, Crane S, et al. Long-distance frequency transfer over an urban fiber link using optical phase stabilization[J]. Journal of the Optical Society of America B, 2008, 25(12): 2029-2035.
[13] Grosche G, Terra O, Predehl K, et al. Optical frequency transfer via 146 km fiber link with 10-19 relative accuracy[J]. Optics Letters, 2009, 34(15): 2270-2272.
[14] Musha M, Hong F L, Nakagawa K, et al. Coherent optical frequency transfer over 50-km physical distance using a 120-km long installed telecom fiber network[J]. Optics Express, 2008, 16(21): 16459-16466.
[15] Wang B, Gao C, Chen W L, et al. Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level[J]. Scientific Reports, 2012, 2: 556.
[16] Wang B, Gao C, Chen W L, et al. Fiber-based time and frequency dissemination between THU and NIM[C]. IEEE International Frequency Control Symposium (FCS), Baltimore, MD, USA, May 21-24, 2012.
[17] Wang B, Gao C, Chen W L, et al. A 10-18/day fiber-based RF frequency dissemination chain[C]. CLEO: Science and Innovations, San Jose, California, USA, May 6-11, 2012.
[18] Wang B, Gao C, Chen W L, et al. Precise time and frequency synchronization at the 5×10-19 level[C]. The 5th International Symposium on Cold Atom Physics, The Three Gorges, China, June 23-27, 2012.
[19] 王波, 高超, 陈伟亮, 等. 原子时信号的高稳定度传输与比对[C]. 全国 时间频率学术会议, 北京, 10.20-21, 2011. Wang Bo, Gao Chao, Chen Weiliang, et al. Precise time and frequency comparison of the atomic frequency standard[C]. China Time and Frequency Symposium, Beijing, October 20-21, 2011.
[20] Fujieda M, Kumagai M, Gotoh T, et al. Ultrastable frequency dissemination via optical fiber an NICT[J]. IEEE Transactions on Instruments Measurement, 2009, 58(4): 1223-1228.
[21] Lopez O, Amy-Klein A, Lours M, et al. High-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Applied Physics B, 2010, 98(4): 723-727.
[22] Marra G, Margolis H S, Lea S N, et al. High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber[J]. Optics Letters, 2011, 35(7): 1025-1027.
[23] Hou D, Li P, Liu C, et al. Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization[J]. Optics Express, 2010, 19(2): 506-511.
[24] Ashby N. Relativity in the global positioning system[J]. Living Reviews in Relativity, 2003, 6(1): 1-42.
[25] Wang Z B, Zhao L, Wang S G, et al. COMPASS time synchronization and dissemination[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(9): 1788-1804.
[26] Gao C, Wang B, Chen W L, et al. Fiber based multiple-access ultrastable frequency dissemination[J]. Optics Letters, 2012, 37(22): 4690-4692.
[27] Microsemi. MHM2010 active hydrogen maser datasheet[EB/OL]. [2014-01-12]. http://www.microsemi.com/products/timing-synchronizationsystems/ time-frequency-references/active-hydrogen-maser/mhm-2010-active-hydrogen-maser#documents.
[28] Robertson D S. Geophysical applications of very-long-baseline interfereometry[J]. Review of Modern Physics, 1991, 63(4): 899-918.
[29] Vanier J, Audoin C. The quantum physics of atomic frequency standard[M]. London UK: IOP Publishing Limited, 1989.
文章导航

/