专题论文

川东北寒武纪盐盆成盐环境及其找钾意义

  • 王淑丽 ,
  • 郑绵平
展开
  • 中国地质科学院矿产资源研究所, 国土资源部盐湖资源与环境重点实验室, 北京 100037
王淑丽,博士后,研究方向为盐类矿床学,电子信箱:wangshuli77@126.com

收稿日期: 2014-09-16

  修回日期: 2014-11-05

  网络出版日期: 2014-12-25

基金资助

国家自然科学基金青年科学基金项目(41403019);国家自然科学基金重点项目(U0833601);中国地质调查局地质调查项目(1212010011810)

Cambrian Salt- forming Environment in Northeastern Sichuan Basin and Its Significance for Finding Potash

  • WANG Shuli ,
  • ZHENG Mianping
Expand
  • MLR Key Laboratory of Saline Lake Resources and Environments; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Received date: 2014-09-16

  Revised date: 2014-11-05

  Online published: 2014-12-25

摘要

四川盆地东北部寒武系蒸发盐发育,该区钻孔见有高矿化度卤水,建南地区中寒武统覃家庙组沉积厚层石膏及石盐(建深1 井),钻遇石盐累计厚度达120 m,各盐层之间仅夹有薄层石膏,石盐单层最厚达80 m(可能存在挤压增厚),结束了对于本区未达到石盐沉积的认识.对建深1 井岩盐沉积段岩屑样品(石盐岩屑尚难识别其是原生石盐还是次生石盐)的溴氯系数进行分析得出,其溴氯系数值相对较低,一般为0.05~0.22.将水溶与酸溶的钾离子百分含量进行对比,酸溶的钾离子含量明显高于水溶钾离子含量,约为水溶的1.3~2.0 倍,可能与石盐岩屑中存在较难溶于水的含钾矿物有关.川东北现有多口井钻遇寒武系高矿化度含(富)钾、溴、锂卤水,其含量最高可分别达4.6 g/L、886 mg/L 和148 mg/L,可进行综合利用.研究认为该区卤水的较高,Li+含量既不是完全由海水浓缩而成的沉积卤水,更不是溶滤盐类的结果,推测与该地区的水—岩作用、火山活动与深部来源的热水有关.综合分析本区的成钾条件和亚洲寒武系成盐成钾的广泛性,认为应关注及加强研究该区成盐找钾.

本文引用格式

王淑丽 , 郑绵平 . 川东北寒武纪盐盆成盐环境及其找钾意义[J]. 科技导报, 2014 , 32(35) : 41 -49 . DOI: 10.3981/j.issn.1000-7857.2014.35.005

Abstract

Cambrian evaporites are in a wide distribution and the brine with high salinity was found in northeastern Sichuan basin. The thick layer of halite and gypsum in Qinjiamiao formation of Middle Cambrian was found in Jiannan area. Well Jianshen 1 encounters the thick halite layer, with accumulative thickness of up to 120 m, with thin-bedded gypsum, and with the single –layer thickness of halite reaching a maximum of 80 m (might be thickened by squeezing), which overturns the previous conclusion that this area has not reached the halite deposition stage. The bromine to chlorine ratio is analyzed for halite debris (it is not easy to determine whether the halite debris is primary or secondary) and the Br × 103/Cl value ranges mostly from 0.05 to 0.22, indicating that the seawater has not reached the stage of sylvite deposition. Comparing the percentages of the water-soluble and acid-soluble potassium ions, the potassium ion content of acid-soluble is found to be about 1.3-2.0 times higher than that of the water-soluble, and this may because the rock salt debris contains water insoluble potassium-bearing minerals. There are several wells that encounter the high salinity brine in northeastern Sichuan basin, with the K+, Br-, and Li+ concentrations up to 4.6 g/L, 886 mg/L and 148 mg/L, respectively for well Tian 2 in Wuxi. In addition, this study reveals that the high Li+ content in the brine is neither from the concentration of sea water, nor from the leaching of salts. It may be related to the water/rock interaction, the volcanic activity or other hot water of deep sources. A comprehensive evaluation of sylvinite forming conditions in this area and the wide distribution of Cambrian salt-bearing basins in Asia indicate that the exploration in this area should be strengthened in the future.

参考文献

[1] Wang S L, Zheng M P, Liu X F, et al. Distribution of Cambrian saltbearing basins in China and its significance for halite and potash finding[J]. Journal of Earth Science, 2013, 24(2): 212-233.
[2] 王淑丽, 郑绵平, 焦建. 上扬子区寒武系蒸发岩沉积相及成钾潜力分 析[J]. 地质与勘探, 2012, 48(5): 947-958. Wang Shuli, Zheng Mianping, Jiao Jian. Sedimentary facies of the Cambrian evaporites in the upper Yangtze region and their potashforming potential[J]. Geology and Exploration, 2012, 48(5): 947-958.
[3] Zheng M P, Yuan H R, Zhang Y S, et al. Regional distribution and prospects of potash in China[J]. Acta Geoligica Sinica-English Edition, 2011, 85(1): 17-50.
[4] 钱自强, 曲一华, 刘群. 钾盐矿床[M]. 北京: 地质出版社, 1994: 273. Qian Ziqiang, Qu Yihua, Liu Qun. Potash deposits[M]. Beijing: Geological Publishing House, 1994: 273.
[5] 王鸿祯. 从活动论观点论中国大地构造分区[J]. 地球科学, 1981(1): 42-66. Wang Hongzhen. Geotectonic units of China from the view- point of mobilism[J]. Earth Science-Journal of China University of Geosciences, 1981(1): 42-66.
[6] 王鸿祯, 杨森楠, 刘本培. 中国及邻区构造古地理和生物古地理[M]. 武汉: 中国地质大学出版社, 1989: 347. Wang Hongzhen, Yang Sennan, Liu Benpei. China and adjacent areas tectonic paleogeographic and paleobiogeographic[M]. Wuhan: China University of Geosciences Press, 1989: 347.
[7] Valyashk M G. Basic chemical types of natural waters and the conditions producing them (in Russian)[J]. Record of Academy, 1955 (102): 315-318.
[8] 袁见齐, 霍承禹, 蔡克勤. 盐类矿床成因理论的新发展及其在矿床学 上的地位[J]. 矿床地质, 1982, 1(1): 15-24. Yuan Jianqi, Huo Chengyu, Cai Keqin. The advance s in the theory of the origin of salt deposits and their influence on the study of mineral deposits[J]. Mineral Deposits, 1982, 1(1): 15-24.
[9] 郑绵平, 齐文, 张永生. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报, 2006, 25(11): 1239-1246. Zheng Mianping, Qi Wen, Zhang Yongsheng. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China, 2006, 25(11): 1239-1246.
[10] García- Veigas J, Cendón D I, Rosell L, et al. Salt deposition and brine evolution in the Granada Basin (Late Tortonian, SE Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 452- 465.
[11] Skrzypek G, Dogramaci S, Grierson P F. Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia[J]. Chemical Geology, 2013, 357: 164-177.
[12] Richard A, Banks D A, Mercadier J, et al. An evaporated seawater origin for the ore- forming brines in unconformity- related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2011, 75(10): 2792- 2810.
[13] Shouakar-Stash O, Alexeev S V, Frape S K, et al. Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia[J]. Applied Geochemistry, 2007, 22(3): 589-605.
[14] Bottomley D J, Katz A, Chan L H, et al. The origin and evolution of Canadian Shield brines: Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J]. Chemical Geology, 1999, 155(3/4): 295-320.
[15] 程怀德, 马海州, 谭红兵, 等. 钾盐矿床中Br的地球化学特征及研究 进展[J]. 矿物岩石地球化学通报, 2008, 27(4): 399-408. Cheng Huaide, Ma Haizhou, Tan Hongbing, et al. Geochemical characteristics of bromide in potassium deposits:review and research perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(4): 399-408.
[16] 许效松, 吴嘉陵. 云南勐野井钾盐矿床特征,微量元素地球化学及成 因探讨[J]. 中国地质科学院院报. 1983(1): 17-36. Xu Xiaosong, Wu Jialing. Potash deposits in Mengyejing, Yunnan: A study of certain characteristics, geochemistry of trace elements and genesis of the deposits[J]. Acta Geoscientica Sinica, 1983(1): 17-36.
[17] 林耀庭. 溴的地球化学习性及其在四川找钾工作中的应用[J]. 化工 矿产地质, 1995, 17(3): 175-181. Lin Yaoting. Geochemical behaviour of bromine and its application to prospection for potash resource in Sichuan[J]. Geology of Chemical Minerals, 1995, 17(3): 175-181.
[18] Braitsch O. Salt deposits, their origin and composition[M]. Berlin: Springer-Verlage, 1971.
[19] Alcal A F J, Custodio E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal[J]. Journal of Hydrology, 2008, 359(1): 189-207.
[20] Cartwright I, Weaver T R, Fifield L K. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia[J]. Chemical Geology, 2006, 231(1): 38-56.
[21] Fontes J C, Matray J M. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts[J]. Chemical Geology, 1993, 109(1-4): 149-175.
[22] Goncharenko O P. Potassic Salts in phanerozoic evaporite basins and specific features of salt deposition at the final stage of Halogenesis[J]. Lithology and Mineral Resources, 2006, 41(4): 378-388.
[23] Gupta I, Wilson A M, Rostron B J. Cl/Br compositions as indicators of the origin of brines: Hydrogeologic simulations of the Alberta Basin, Canada[J]. Geological Society of America Bulletin, 2012, 124(1/2): 200-212.
[24] Walter L M, Stueber A M, Huston T J. Br- Cl- Na systematics in Illinois basin fluids: Constraints on fluid origin and evolution[J]. Geology, 1990, 18(4): 315-318.
[25] Heinrich C A, Bain J H C, Fardy J J, et al. Br/Cl geochemistry of hydrothermal brines associated with Proterozoic metasediment-hosted copper mineralization at Mount Isa, northern Australia[J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 2991-3000.
[26] 张正禄, 杨海平. 建深1井小井眼钻井技术[J]. 江汉石油科技, 2010, 20(1): 26-29. Zhang Zhenglu, Yang Haiping. The slim hole drilling technology of well jianshen 1[J]. Jianghan Shiyou Keji, 2010, 20(1): 26-29.
[27] 王淑丽, 郑绵平. 寒武系盐盆地的分布特征及其对中国成盐找钾的 意义[J]. 科技导报, 2013, 31(4): 17-27. Wang Shuli, Zheng Mianping. Distribution of Cambrian salt basin and its significance for halite and potash explorations in China[J]. Science & Technology Review, 2013, 31(4): 17-27.
[28] McCaffrey M A, Lazar B, Holland H D. The evaporation path of seawater and the coprecipitation of Br (super-) and K (super+) with halite[J]. Journal of Sedimentary Research, 1987, 57(5): 928-937.
[29] 陈郁华. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布 规律[J]. 地质学报, 1983(4): 379-390. Chen Yuhua. Sequence of salt separation and regularity of some trace elements distribution during isothermal evaporation (25℃) of the Yellow sea[J]. Acta Geoligica Sinica-English Edition, 1983(4): 379- 390.
文章导航

/