专题论文

柴达木盆地西部尕斯库勒盐湖周缘岩系和湖内沉积物含铀性模拟

  • 叶传永 ,
  • 王志明 ,
  • 郑绵平 ,
  • 郝伟林 ,
  • 林效宾 ,
  • 韩军
展开
  • 1. 中国地质科学院矿产资源研究所, 国土资源部盐湖资源与环境重点实验室, 北京 100037;
    2. 中国地质科学院盐湖与热水资源研究发展中心, 北京 100037;
    3. 核工业北京地质研究院, 北京 100029;
    4. 中核集团铀资源勘查与评价技术重点实验室, 北京 100029
叶传永,博士后,研究方向为盐湖矿产普查与勘探,电子信箱:chuanyongye@163.com

收稿日期: 2014-09-16

  修回日期: 2014-11-05

  网络出版日期: 2014-12-25

基金资助

国防科工局核能开发项目(地HY230)

Simulation Experiments on the Uraniferous Possibility of Peripheral Rock Series and Sediment from Gasikule Salt Lake, Western Qaidam Basin

  • YE Chuanyong ,
  • WANG Zhiming ,
  • ZHENG Mianping ,
  • HAO Weilin ,
  • LIN Xiaobin ,
  • HAN Jun
Expand
  • 1. MLR Key Laboratory of Saline Lake Resources and Environments; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. Research and Development Center for Saline Lake and Epithermal Deposit, Chinese Academy of Geological Sciences, Beijing 100037, China;
    3. Beijing Research Institute of Uranium Geology, Beijing 100029, China;
    4. Key Laboratory of Uranium Resources Exploration and Evaluation Technology of China National Nuclear Corporation, Beijing 100029, China

Received date: 2014-09-16

  Revised date: 2014-11-05

  Online published: 2014-12-25

摘要

以柴达木盆地西部尕斯库勒盐湖周缘岩系和湖内沉积物为研究对象,通过淋滤实验和悬浮平衡模拟实验,探讨该盐湖不同物源的含铀性.分析表明,尕斯库勒盐湖周缘3 种岩系(老地层、上新世含盐岩系、第四纪沉积物)淋滤液水化学特征类似,且从淋滤液水化学特征可知该盐湖水化学具有明显的再溶盐特征;3 种岩系淋滤作用强烈,盐湖第四纪沉积物中的铀最容易被淋出,上新世含盐岩系中的铀次之,蚀源区岩石中的铀难淋出;悬浮平衡实验表明,悬浮液中铀含量随平衡时间增长呈现先迅速降低而后缓慢升高的变化趋势,而沉积颗粒物中铀含量变化趋势与悬浮液中铀含量刚好相反,说明铀在悬浮液和沉积颗粒物之间确实发生了交换,且交换速率较快;在平衡实验初期,悬浮液中铀含量快速降低的现象可能是悬浮液中的铀被固相吸附所致;不同时期铀的来源分析表明,在新近纪和第四纪早期,尕斯库勒盐湖内卤水和沉积物中的铀主要来自周边岩石的风化淋滤作用,铀补给量相对较少,而到了第四纪中、晚期,铀主要来自上新世含盐岩系风化淋滤和深部水补给,再加上沉积物和周边岩石化学风化,铀补给量相对前一时期大得多.

本文引用格式

叶传永 , 王志明 , 郑绵平 , 郝伟林 , 林效宾 , 韩军 . 柴达木盆地西部尕斯库勒盐湖周缘岩系和湖内沉积物含铀性模拟[J]. 科技导报, 2014 , 32(35) : 61 -70 . DOI: 10.3981/j.issn.1000-7857.2014.35.007

Abstract

In order to explore the uraniferous possibility in different parts of China, the leaching experiments of peripheral rock series and the equilibration experiment of sediment from Gasikule Salt Lake located in the western margin of Qaidam Basin are conducted in this paper. It is shown that the leachate has similar hydrochemical characteristics of three types of rock series (old strata, Pliocene salt-bearing strata and Quaternay sediment) around Gasikule Salt Lake. The hydrochemistry of Gasikule Salt Lake basin is deeply influenced by peripheral rock series and characterized by re-dissolved salt obviously. Three types of rock series suffer severely from eluviations, and the leaching trend is in the order of Quaternay sediment > Pliocene salt- bearing strata > old strata. In the equilibration experiment, the uranium concentration in the suspension decreases first and then slowly increases against the balance time. However, the uranium concentration in the sediments sees a reverse trend, which illustrates that the uranium has a rapid exchange between the suspension and the sediment. The uranium in the suspension absorbed by the sediment may be accounted for the decrease of the uranium concentration in the suspension at the first stage of the equilibration experiment. During Neogene and early Quarternary, the uranium in Gasikule Salt Lake's brine and sediment mainly comes from the chemical weathering in the peripheral old strata. However, the Pliocene salt-bearing strata and the deep water contain the majority of uranium sources during late Quaternary, coupled with sediment and old strata weathering, this period enjoys larger uranium supplementary amount than that in the periods of Neogene and early Quarternary.

参考文献

[1] 郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京: 北京科学技术出版 社, 1989. Zheng Mianping, Xiang Jun, Wei Xinjun, et al. Saline lakes of Tibetan Plateau[M]. Beijing: Beijing Science and Technology Press, 1989.
[2] 郑喜玉, 唐渊, 徐昶, 等. 西藏盐湖[M]. 北京: 科学出版社, 1988. Zheng Xiyu, Tang Yuan, Xu Chang, et al. Saline lakes of Tibet[M]. Beijing: Science Press, 1988.
[3] 郑喜玉, 李秉孝, 高章洪. 新疆盐湖[M]. 北京: 科学出版社, 1995. Zheng Xiyu, Li Bingxiao, Gao Zhanghong. Saline lakes of Xinjiang[M]. Beijing: Science Press, 1995.
[4] 张彭熹, 郑喜玉, 关玉奎. 柴达木盆地盐湖[M]. 北京: 科学出版社, 1987. Zhang Pengxi, Zheng Xiyu, Guan Yukui. Saline lakes of Qaidam Basin[M]. Beijing: Science Press, 1987.
[5] 张彭熹, 张保珍, 唐渊, 等. 中国盐湖自然资源及其开发利用[M]. 北京: 科学出版社, 1999. Zhang Pengxi, Zhang Baozhen, Tang Yuan, et al. Saline lakes of Qaidam Basin[M]. Beijing: Science Press, 1987.
[6] 魏新俊, 邵长铎, 王弭力, 等. 柴达木盆地西部富钾盐湖物质组分、沉 积特征及形成条件研究[M]. 北京: 地质出版社, 1993. Wei Xinjun, Shao Changduo, Wang Mili, et al. Material composition, sedimentary characteristics and formation conditions of potash- bearing saline lakes in the western of Qaidam Basin[M]. Beijing: Geological Publishing House, 1993.
[7] 半谷高久. 水质调查法[M]. 东京: 丸善株式会社, 1960. Ban Gugaojiu. Investigation methods of water quality[M]. Tokyo: Jointstock Company Press, 1960.
[8] Fan Q S, Ma H Z, Lai Z P, et al. Origin and evolution of oilfield brines from Tertiary strata in western Qaidam Basin: Constraints from 87Sr/86Sr, δD, δ18O, δ34S and water chemistry[J]. Chinese of Journal Geochemistry, 2010, 29: 446-454.
[9] Tan H B, Rao W B, Chen J S, et al. Chemical and isotopic approach to groundwater cycle in Western Qaidam Basin, China[J]. Chinese Geographical Science, 2009, 19(4): 357-364.
[10] Tan H B, Rao W B, Ma H Z, et al. Hydrogen, oxygen, helium and strontium isotopic constraints on the formation of oilfield waters in the western Qaidam Basin, China[J]. Journal of Asian Earth Sciences, 2011, 40: 651-660.
[11] Tan H B, Chen J, Rao W B, et al. Geothermal constrains on enrichment of boron and lithium in salt lakes: An example from a stream-salt lake system on the northern slope of the eastern Kunlun Mountains, China[J]. Journal of Asian Earth Sciences, 2012, 51: 21-29.
[12] 樊启顺, 马海州, 谭红兵, 等. 柴达木盆地西部卤水水化学特征与找 钾研究[J]. 地球学报, 2007, 28(5): 446-455. Fan Qishun, Ma Haizhou, Tan Hongbin, et al. Hydrochemical characteristics of brines and potassium-prospecting researches in western Qaidam Basin[J]. Acta Geosientica Sinica, 2007, 28(5): 446-455.
[13] 樊启顺, 马海州, 谭红兵, 等. 柴达木盆地西部卤水特征及成因探讨[J]. 地球化学, 2007, 36(6): 633-637. Fan Qishun, Ma Haizhou, Tan Hongbin, et al. Characteristics and origin of brines in western Qaidam Basin[J]. Geochimica, 2007, 36(6): 633-637.
[14] 李廷伟. 柴达木盆地西部油田卤水形成演化的水化学和锶同位素研 究[D]. 西宁: 中国科学院青海盐湖研究所, 2007. Li Tingwei. The origin analysis by hydro-chemical characters and Sr isotope of oil field brines in weist of Qaidam Basin[D]. Xining: Qinghai Institute of Ssalt Lakes, Chinese Academy of Sciences, 2007.
[15] 谭红兵, 曹成东, 李廷伟, 等. 柴达木盆地西部古近系和新近系油田 卤水资源水化学特征及其化学演化[J]. 古地理学报, 2007, 9(3): 313- 320. Tan Hongbing, Cao Chengdong, Li Tingwei, et al. Hydrochemistry characteristics and chemical evolution of oilfield brines of the Paleogene and Neogene in western Qaidam Basin[J]. Journal of Palaeogeography, 2007, 9(3): 313-320.
[16] Zhang J, Huang W W, Letolle R, et al. Major element chemistry of the Huanghe (Yellow River), China- weathering processes and chemical fluxes[J]. Journal of Hydrology, 1995, 168: 173-203.
[17] 许卉, 杨昕. 黄土中矿物元素的淋溶释放研究[J]. 土壤与环境, 2002, 11(1): 38-41. Xu Hui, Yang Xin. Releasing of major elements from loess leached by rain[J]. Soil and Environment Sciences, 2002, 11(1): 38-41.
[18] Mason C F V, Turney W R J R, Thomson B M, et al. Carbonate leaching of uranium from contaminated soils[J]. Environmental Science & Technology, 1997, 31: 2707-2711.
[19] Bonotto D M, Andrews J N, Darbyshire D P F. A laboratory study of the transfer of 234U and 238U during water- rock interactions in the Carnmenellis granite (Cornwall, England) and implications for the interpretations of field data[J]. Applied Radiation and Isotopes, 2001, 54: 977-994.
[20] Kolahchi Z, Jalali M. Effect of water quality on the leaching of potassium from sandy soil[J]. Journal of Arid Environments, 2007, 68: 624-639.
[21] 王鹏, 王胜艳, 郝少盼, 等. 模拟扰动条件下太湖沉积物的再悬浮特 征[J]. 水科学进展, 2010, 21(3): 399-404. Wang Peng, Wang Shengyan, Hao Shaopan, et al. Characteristics of sediment resuspension in Taihu Lake under simulative disturbing conditions[J]. Advances in Water Science, 2010, 21(3): 399-404.
[22] 周孝德. 渭河泥沙对重金属污染物吸附的实验研究[J]. 水利学报, 1993(7): 44-49. Zhou Xiaode. Experimental study on the adsorption of heavy metals in the sediment of Weihe[J]. Journal of Hydraulic Engineering, 1993(7): 44- 49.
[23] 赵蓉, 倪晋仁, 孙卫玲, 等. 黄河中游泥沙对铜离子的吸持行为研究[J]. 环境科学学报, 2003, 23(4): 441-446. Zhao Rong, Ni Jinren, Sun Weiling, et al. Copper sorption by sediments from the middle Yellow River[J]. Acta Scientiae Circumstantiae, 2003, 23 (4): 441-446.
[24] 张岚, 倪晋仁, 孙卫玲, 等. 高含沙水体中黄土吸持和释放铜的机理[J]. 环境科学, 2011, 24(3): 79-84. Zhang Lan, Ni Jinren, Sun Weiling, et al. Copper sorption and desorption by Loess in water-sediment system[J]. Environmental Science, 2003, 24 (3): 79-84.
[25] 陈静生, 张宇, 于涛, 等. 对黄河泥沙有机质的溶解特性和降解特性 的研究—再论黄河水的COD值不能真实反映其污染状况[J]. 环境科 学学报, 2004, 24(1): 1-5. Chen Jingsheng, Zhang Yu, Yu Tao, et al. A study on dissolution and bio-degradation of organic matter in sediments from the Yellow River[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 1-5.
[26] Herzl V M C, Millward G E, Wollast R, et al. Species of dissolved Cu and Ni and their adsorption kinetics in turbid riverwater[J]. Estuarine, Coastal and Shelf Science, 2003, 56(1): 43-52.
[27] Michael H A, Mulligan A E, Harvey C F. Seasonal oscillations in water exchange between aquifers and the coastal ocean[J]. Nature, 2005, 436: 1145-1148.
[28] Shulkin V M, Bogdanova N N. Mobilization of metals from riverine suspended matter in seawater[J]. Marine Chemistry, 2003, 83(3/4): 157- 167.
[29] 刘成林, 曹养同, 杨海军, 等. 库车前陆盆地古近纪—新近纪盐湖环 境变迁及其成钾效应探讨[J]. 地球学报, 2013, 34(5): 547-558. Liu Chenglin, Cao Yangtong, Yang Haijun, et al. Discussion on paleogene- enogene environmental change of salt lakes in Kuqa Foreland Basin and its potash- forming effect[J]. Acta Geoscientica Sinica, 2013, 34(5): 547-558.
[30] 袁亚娟, 夏斌, 吕宝凤. 柴达木盆地断裂组合特征及油气成藏意义[J]. 断块油气田, 2011, 18(2): 212-216. Yuan Yajuan, Xia Bin, Lü Baofeng. Assemblage charactristics of faults and its significance to hydrocarbon accumulation in Qaidam Basin[J]. Fault-block Oil & Gas Field, 2011, 18(2): 212-216.
[31] 黄麒, 韩凤清. 柴达木盆地盐湖演化与古气候波动[M]. 北京: 科学出 版社, 2007. Huang Qi, Han Fengqing. Environmental evolution and ancient climate fluctuations in Saline Lakes of Qaidam Basin[M]. Beijing: Science Press, 2007.
[32] 沈照理, 朱宛华, 钟左燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993. Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. The basis of hydrochemistry[M]. Beijing: Geological Publishing House, 1993.
[33] Wang J B, Zhu L P, Wang Y, et al. Comparisons between the chmical compositions of lake water, inflowing stream water, and sediment in Nam Co, central Tibetan Plateau, China and their controlling mechanisms[J]. Journal of Great Lakes Research, 2010, 36: 587-595.
[34] Qi L, Hu J, Conrad G D. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507-513.
[35] 江雪艳. 黄河干流、河口及莱州湾南岸铀的分布及成因研究[D]. 青 岛: 中国海洋大学, 2008. Jiang Xueyan. Study of the distribution and genesis of uranium in the main channel and estuary of Yellow River and the southern coast of Laizhou Bay[D]. Qingdao: Ocean University of China, 2008.
[36] 王剑锋. 铀地球化学教程[M]. 北京: 原子能出版社, 1986. Wang Jianfeng. The course of uranium geochemistry[M]. Beijing: Atomic Energy Press, 1986.
[37] 张祖还, 赵懿英, 章邦桐, 等. 铀地球化学[M]. 北京: 原子能出版社, 1984. Zhang Zuhuan, Zhao Yiying, Zhang Bangtong, et al. Geochemistry of uranium[M]. Beijing: Atomic Energy Press, 1984.
文章导航

/