研究论文

黄土中联合板索基础的抗拔承载力变化规律及其影响因素

  • 范雪峰 ,
  • 龙哲 ,
  • 言志信
展开
  • 1. 国家电网甘肃省电力公司经济技术研究院, 兰州730050;
    2. 兰州大学西部灾害与环境力学教育部重点实验室, 兰州730000;
    3. 兰州大学土木工程与力学学院, 兰州730000
范雪峰, 高级工程师, 研究方向为电网建设, 电子信箱:frankfrank605@163.com

收稿日期: 2014-01-07

  修回日期: 2014-10-15

  网络出版日期: 2015-01-09

基金资助

国家自然科学基金面上项目(41372307);国家电网科技项目(KJ201312)

Vertical Uplift Capacity of Combined Cable-slab Foundation in Loess and Influencing Factors

  • FAN Xuefeng ,
  • LONG Zhe ,
  • YAN Zhixin
Expand
  • 1. Research Institute of Economics and Technology of Gansu Province Electric Power Company, State Grid Corporation of China, Lanzhou 730050, China;
    2. Key Laboratory of Mechanics on Disaster and Environment in Western China, the Ministry of Education of China, Lanzhou University, Lanzhou 730000, China;
    3. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China

Received date: 2014-01-07

  Revised date: 2014-10-15

  Online published: 2015-01-09

摘要

假设黄土为符合Mohr-Coulomb 屈服准则的理想弹塑性材料且锚板为刚性体, 采用有限差分模拟软件FLAC3D建立三维数值模型, 利用接触面单元分析联合板索基础锚板上拔过程中黄土变形破坏机理, 研究了锚板抗拔承载力的变化规律及其影响因素。结果表明, 锚板的抗拔承载力随着锚板埋置深度的增加呈现近似线性增大, 但当埋深超过临界深度时锚板抗拔承载力趋于定值;增大锚板面积能够提高总承载力, 但单位面积承载力会下降;相同面积条件下, 圆形锚板抗拔承载力最大, 方形锚板次之, 矩形锚板抗拔承载力随着长宽比的增大而逐渐减小;锚板抗拔承载力随土体抗剪强度的增大而增大, 提升地基土体的抗剪强度指标(特别是黏聚力), 能够有效提高联合板索基础的抗拔承载力。

本文引用格式

范雪峰 , 龙哲 , 言志信 . 黄土中联合板索基础的抗拔承载力变化规律及其影响因素[J]. 科技导报, 2014 , 32(36) : 86 -92 . DOI: 10.3981/j.issn.1000-7857.2014.36.014

Abstract

Based on the assumption that loess is an elastic-perfectly plastic material which obeys Mohr-Coulomb yield condition and the anchor plate is a rigid body, a three-dimensional numerical analysis model is established by use of the finite-difference software FLAC3D and the anchor-soil interaction is then simulated. The deformation mechanism of loess around plate anchors during uplifting is analyzed by the contact plane element. The influencing factors including depth ratio, loess shear strength parameter, shape and size of anchor plate are considered in the ultimate pull-out capacity analysis. It is found that the ultimate pull-out capacity of anchor plate is jointly influenced by these factors. It increases with the increased depth ratio and loess shear strength, however the influencing extent is different. Expanding the plate size can increase the total capacity, but the capacity per unit area will decrease. For plates of same area, the circular one has the biggest ultimate pull-out capacity while the square takes the second. The coefficient of a rectangle plate decreases when the length-width ratio increases. The rules revealed by this study have a reference value for the study and promotion of combined cable-slab foundation in loess areas.

参考文献

[1] RoweRK,DavisEH.Thebehaviorofanchorplatesinclay[J].Geotechnique, 1982, 32(1): 9-23.
[2] Das B M, Puri V K. Holding capacity of inclined square plate anchors in clay[J]. Soils and Foundations, 1989, 29(3): 138-144.
[3] Merifield R S, Yamin A V, Sloan S W. The stability of inclined plate anchors in purely cohesive soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(6): 792-799.
[4] Merifield R S, Sloan S W, Yu H S. Stability of plate anchors in undrained clay[J]. Geotechnique, 2001, 51(2): 141-153.
[5] Song Z, Hu Y, Randolph M F. Numerical simulation of vertical pullout of plate anchors in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 866-875.
[6] 赵炼恒, 罗强, 李亮, 等. 水平矩形浅锚极限抗拔力分析[J]. 岩土工程学 报, 2009, 31(9): 1414-1420. Zhao Lianheng, Luo Qiang, Li Liang, et al. Ultimate pullout capacity of horizontal rectangular plate anchors[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1414-1420.
[7] 刘君, 吴利玲, 胡玉霞. 正常固结黏土中圆形锚板抗拔承载力[J]. 大连 理工大学学报, 2006, 46(5): 712-7l9. Liu Jun, Wu Liling, Hu Yuxia. Pullout capacity of circular plate anchors in NC clay[J]. Journal of Dalian University of Technology, 2006, 46(5): 712-7l9.
[8] 于龙, 刘君, 孔宪京. 锚板在正常固结黏土中的承载力[J]. 岩土力学, 2008, 28(7): 1427-1434. Yu Long, Liu Jun, Kong Xianjing. Stability of plate anchors in NC clay[J]. Rock and Soil Mechanics, 2008, 28(7): 1427-1434.
[9] 王志云, 王忠涛, 栾茂田, 等. 吸力式沉箱基础极限拉拔承载力的数值 分析[J]. 岩土力学, 2008, 29(6): 1545-1550. Wang Zhiyun, Wang Zhongtao, Luan Maotian, et al. Numerical analysis of ultimate uplift bearing capacity behavior of suction caisson foundations[J]. Rock and Soil Mechanics, 2008, 29(6): 1545-1550.
[10] 王晖, 董玉才, 李新超, 等. 法向承力锚极限抗拔力影响因素的二维 有限元分析[J]. 天津大学学报, 2010, 43(11): 964-970. Wang Hui, Dong Yucai, Li Xinchao, et al. Two-dimensional FEM analysis of influencing factors on ultimate pull-out capacity of vertically lLoaded anchor[J]. Journal of Tianjin University, 2010, 43(11): 964-970.
[11] 刘君, 于龙, 吴利玲, 等. 饱和黏土中倾斜圆形锚板承载力分析[J]. 大 连理工大学学报, 2008, 48(2): 229-234. Liu Jun, Yu Long, Wu Liling, et al. Stability of inclined circular plate anchors in saturated clay[J]. Journal of Dalian University of Technology, 2008, 48(2): 229-234.
[12] 曹兰柱, 杨秀. 基于FLAC3D的黄土基底排土场边坡稳定性分析[J]. 科 技导报, 2011, 29(14): 46-50. Cao Lanzhu, Yang Xiu. The slope stability of loess base dump based on FLAC3D[J]. Science & Technology Review, 2011, 29(14): 46-50.
[13] 丁佩民, 肖志斌, 张其林, 等. 砂土中锚板抗拔承载力研究[J]. 建筑结 构学报, 2003, 24(5): 82-91. Ding Peimin, Xiao Zhibin, Zhang Qilin, et al. Uplift capacity of anchor plates in sand[J]. Journal of Building Structures. 2003, 24(5): 82-91.
[14] 茜平一, 刘祖德. 浅埋斜拔锚板板周土体的变形破坏特征[J]. 岩土工 程学报, 1992, 14(1): 62-66. Qian Pingyi, Liu Zude. Deformation and failure characteristics of soil mass around inclined plate anchors[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 62-66.
[15] 张昕, 乐金朝, 刘明亮, 等. 砂土中锚板的抗拔机理与承载力计算模 型研究[J]. 岩土工程学报, 2012, 34(9): 1734-1739. Zhang Xin, Yue Jinchao, Liu Mingliang, et al. Uplifting behavior and bearing capacity of plate anchors in sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1734-1739.
文章导航

/