研究论文

拓扑结构对网络承载能力的影响

  • 孙磊 ,
  • 李荣 ,
  • 靳聪 ,
  • 陈孝国
展开
  • 1. 中国矿业大学力学与建筑工程学院, 北京100083;
    2. 浙江商业职业技术学院财金学院, 杭州310053;
    3. 黑龙江科技大学理学院, 哈尔滨150022
孙磊, 博士研究生, 研究方向为工程管理, 电子信箱:cumtb_sunlei@163.com

收稿日期: 2014-05-05

  修回日期: 2014-08-30

  网络出版日期: 2015-02-02

基金资助

黑龙江省教育厅科学技术研究项目(12531577);黑龙江科技大学青年才俊培养计划项目(20120501)

Influence of network topology on network capacity

  • SUN Lei ,
  • LI Rong ,
  • JIN Cong ,
  • CHEN Xiaoguo
Expand
  • 1. School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China;
    2. School of Accounting and Finance, Zhejiang Business College, Hangzhou 310053, China;
    3. School of Science, Heilongjiang University of Science and Technology, Harbin 150022, China

Received date: 2014-05-05

  Revised date: 2014-08-30

  Online published: 2015-02-02

摘要

通过建立3 种典型的复杂网络模型及对应的输运模型,数值计算并仿真试验拓扑结构指标和网络承载能力的变化.结果显示:3 种网络承载能力的数值计算结果和仿真试验结果基本吻合;核心节点的存在使得无标度网络的节点最大介数值所占比重高于其他网络,导致网络的承载能力最小;随机网络的节点最大介数值所占比重低于其他网络,导致承载能力最大;随着平均度的增大,各类型网络承载能力增加明显,但各种拓扑结构指标对承载能力提升的贡献不同.

本文引用格式

孙磊 , 李荣 , 靳聪 , 陈孝国 . 拓扑结构对网络承载能力的影响[J]. 科技导报, 2015 , 33(1) : 86 -89 . DOI: 10.3981/j.issn.1000-7857.2015.01.015

Abstract

Three typical complex network models and corresponding traffic routing models were established to carry out numerical computation and simulation of topological indicators and network capacity, and empirical analysis of how network capacity is influenced by network topology was conducted. The results show that numerical calculation results and experimental results of the capacity of three different networks were roughly consistent. With existence of the core node, scale-free network had the shortest average travel path, and the proportion of the largest betweenness was much higher than that in other networks, leading to minimum capacity of the scale-free network; the proportion of the largest betweenness of nodes in random network was lower than that in other networks, leading to maximum capacity of the random network. The increase of average degree resulted in significant increase of network capacity, but the contribution of different topological indicators was not the same. Understanding the quantitative relation between network topology and network capacity is beneficial to conducting effective prevention and intervention concerning dynamic processes in the network.

参考文献

[1] Watts D J, Strogatz S H. Collective dynamics of small world networks[J]. Nature, 1998, 393(6684): 440-442.
[2] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[3] Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74: 47-97.
[4] Toroczkai Z, Bassler K E. Network dynamics: Jamming is limited in scale-free systems[J]. Nature, 2004, 428(6984): 716-716.
[5] Arenas A, Díaz Guilera A, Guimera R. Communication in networks with hierarchical branching[J]. Physical Review Letters, 2001, 86(14): 3196.
[6] Moreno Y, Gómez J B, Pacheco A F. Instability of scale-free networks under node- breaking avalanches[J]. Europhysics Letters, 2002, 58(4): 630-636.
[7] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102.
[8] Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distributions and their applications[J]. Physical Review E, 2001, 64(2): 026118.
[9] 田旭光, 朱元昌, 邸彦强. 复杂网络抗毁性优化问题的研究[J]. 系统科 学学报, 2014(1): 60-65. Tian Xuguang, Zhu Yuanchang, Di Yanqiang. Survey on optimization for invulnerability of complex networks[J]. Journal of Systems Science, 2014(1): 60-65.
[10] Qu Z H, Wang P, Song C M, et al. Enhancement of scale- free network attack tolerance[J]. Chinese Physics B, 2010, 19(11): 110504.
[11] Zhao L, Lai Y C, Park K, et al. Onset of traffic congestion in complex networks[J]. Physical Review E, 2005, 71(2): 026125.
[12] Tadić B, Thurner S, Rodgers G J. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations[J]. Physical Review E, 2004, 69(3): 036102.
[13] Guimerà R, Diaz Guilera A, Vega Redondo F, et al. Optimal network topologies for local search with congestion[J]. Physical Review Letters, 2002, 89(24): 248701.
[14] Tadić B, Rodgers G J, Thurner S. Transport on complex networks: Flow, jamming and optimization[J]. International Journal of Bifurcation and Chaos, 2007, 17(07): 2363-2385.
文章导航

/