研究论文

轨道检测GPS数据采集系统硬件设计与实现

  • 傅勤毅 ,
  • 刘芝平 ,
  • 贾岩
展开
  • 中南大学交通运输工程学院, 长沙410075
傅勤毅,教授,研究方向为轨道检测与故障诊断,电子信箱:15200826420@163.com;刘芝平,硕士研究生,研究方向为轨道检测,电子信箱:978891375@qq.com

收稿日期: 2014-07-09

  修回日期: 2014-11-25

  网络出版日期: 2015-02-09

基金资助

国家自然科学基金项目(50975789, 51275531)

Hardware design and implementation of GPS data acquisition system for track inspection

  • FU Qinyi ,
  • LIU Zhiping ,
  • JIA Yan
Expand
  • School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China

Received date: 2014-07-09

  Revised date: 2014-11-25

  Online published: 2015-02-09

摘要

针对传统轨道检测系统效率低、成本高的不足,应用GPS 全球定位技术、GPRS 无线通信技术和CAN 总线技术,提出一种新型轨道检测方案,并对GPS 数据采集系统的关键模块进行了设计。GPS 数据采集系统由4 个基站GPS 模块和1 个流动站GPS 节点组成,实现了相对测量与绝对测量的统一,提高了检测精度;基于GPS 的数据采集实时准确,更新率高达50 Hz;利用GPRS 进行无线数据传输,方便快捷,实时高效;利用CAN 提高了通信速率(高达l Mbps),且可靠性高、性能稳定;通过Flash 存储器进行数据缓存,再传至上位机进行存储与处理,系统容量高达500 G,数据处理简单高效。

本文引用格式

傅勤毅 , 刘芝平 , 贾岩 . 轨道检测GPS数据采集系统硬件设计与实现[J]. 科技导报, 2015 , 33(2) : 39 -44 . DOI: 10.3981/j.issn.1000-7857.2015.02.004

Abstract

Owing to the low efficiency and the high cost of the traditional track inspection system, a new track inspection system is designed on the basis of the GPS global positioning technology and the GPRS wireless communication technology. Four primary modules of the hardware of the GPS data acquisition system are designed and explained in detail, including the GPS data acquisition module, the GPRS communication module, the single-chip microcomputer minimum system and the power transition module. The GPS data acquisition module consists of four GPS modules in the base station and a GPS node in the moving station that realizes the unity of the relative and absolute measurements and improves the positioning accuracy. It is shown that the GPS data acquisition operates in real-time and is accurate, and the data update rate is as high as 50 Hz; The application of the GPRS communication module makes the data transmission convenient and quick; The data are firstly cached in the flash storage, are uploaded to the upper computer for storage and processing afterwards, the system capacity is up to 500 G, the data processing is simple and efficient.

参考文献

[1] 安国栋. 高速铁路精密工程测量技术标准的研究与应用[J]. 铁道学 报, 2010, 32(2): 98-104. An Guodong. Study on technical standard for precise engineering surveying of high-speed railways and its applications[J]. Journal of the China Railway Society, 2010, 32(2): 98-104.
[2] 郑树彬, 林建辉, 林国斌, 等. 高速磁浮轨道长波不平顺检测系统设计[J]. 仪器仪表学报, 2007, 28(10): 1781-1786. Zheng Shubin, Lin Jianhui, Lin Guobin, et al. Design of track long wave irregularity inspection system for high-speed maglev[J]. Chinese Journal of Scientific Instrument, 2007, 28(10): 1781-1786.
[3] 陈强, 刘丽瑶, 杨莹辉, 等. 高速铁路轨道几何状态的车载摄影快速检 测方法与试验[J]. 铁道学报, 2014, 36(3): 80-86. Chen Qiang, Liu Liyao, Yang Yinghui, et al. Static geometry measurement of high- speed railway tracks by vehicle- borne photogrammetry[J]. Journal of China Railway Society, 2014, 36(3): 80- 86.
[4] Xu P, Sun Q X, Liu R K, et al. Key equipment identification model for correcting milepost errors of track geometry data from track inspection cars[J]. Transportation Research Part C: Emerging Technologies, 2013, 35(1): 85-103.
[5] Iyengar R N, Jaisal O R. Random field modeling of railway track irregularities[J]. Journal of Transportation Engineering, 1995, 121(4): 303-308.
[6] 夏敬潮, 叶世榕, 刘炎炎, 等. Wi-Fi辅助下附有高程信息的GPS定位[J]. 武汉大学学报: 信息科学版, 2014, 39(1): 52-55. Xia Jingchao, Ye Shirong, Liu Yanyan, et al. Wi- Fi assisted GPS positioning with fixed geodetic height[J]. Journal of Wuhan University: Information Science Edition, 2014, 39(1): 52-55.
[7] 郭际明, 周命端, 谢翔, 等. 利用DUFCOM和DC算法的GPS单历元双 差整周模糊度快速确定算法[J]. 武汉大学学报: 信息科学版, 2013, 38 (7): 813-817. Guo Jiming, Zhou Mingduan, Xie Xiang, et al. A fast fixed algorithm of GPS single epoch ambiguity resolution based on DUFCOM and DC algorithms[J]. Journal of Wuhan University: Information Science Edition, 2013, 38(7): 813-817.
[8] Wang P, Lü Z. Wang P, et al. Design of a simple 3-Lead ECG acquisition system based on MSP430F149[J]. Energy Procedia, 2011, 11(4): 669- 675.
[9] Zhao L, Yuan Z, Gao S. The analysis and validation of two-dimensional attitude measurement with GPS[J]. Procedia Engineering, 2012, 29(2): 311-315.
[10] 查长流, 丁希仑, 俞玉树. 微小型空中机器人大容量数据记录仪的设 计与实现[J]. 中南大学学报: 自然科学版, 2013, 44(增2): 77-83. Cha Changliu, Ding Xilun, Yu Yushu. Design and implementation of high-capacity data recorder for micro aero robot[J]. Journal of Central South University: Natural Science Edition, 2013, 44(Suppl 2): 77-83.
[11] 车艳双, 李民赞, 郑立华, 等. 基于GPS和PDA的移动智能农田信息 采集系统开发[J]. 农业工程学报, 2010, 26(2): 109-114. Che Yanshuang, Li Minzan, Zheng Lihua, et al. Development of a moveable farm-data acquisition systems with PDA and GPS[J]. Journal of Agricultural Engineering, 2010, 26(2): 109-114.
[12] 晋孝峰, 岳素格, 刘丽艳, 等. CMOS图像传感器的硬复位电路研究[J]. 电子学报, 2014(1): 182-186. Jin Xiaofeng, Yue Suge, Liu Liyan, et al. Research on CMOS image sensor hard reset circuit[J]. Acta Electronica Sinica, 2014(1): 182-186.
[13] Das A, Da Rolt J, Ghosh S, et al. Secure jtag implementation using schnorr protocol[J]. Journal of Electronic Testing, 2013, 29(2): 193-209.
[14] Fluri T P, Von Backström T W. Performance analysis of the power conversion unit of a solar chimney power plant[J]. Solar Energy, 2008, 82(11): 999-1008.
[15] Liu G, Xiao A, Qian H. Communication system design based on TMS320F2407 with CAN Bus[J]. AASRI Procedia, 2012(3): 463-467.
文章导航

/