研究论文

水平弯管内水合物浆的流动特性

  • 江国业 ,
  • 王晓娅
展开
  • 中国民航大学机场学院, 天津300300
江国业,副教授,研究方向为油气管道流动保障和管网优化,电子信箱:guoyejiang@foxmail.com

收稿日期: 2014-07-14

  修回日期: 2014-08-27

  网络出版日期: 2015-02-09

基金资助

国家自然科学基金项目(51206179);中央高校基本科研业务费专项(3122014D029)

Flow of hydrate slurry in a horizontal elbow pipe

  • JIANG Guoye ,
  • WANG Xiaoya
Expand
  • Airport College, Civil Aviation University of China, Tianjin 300300, China

Received date: 2014-07-14

  Revised date: 2014-08-27

  Online published: 2015-02-09

摘要

为了掌握水平弯管内水合物浆的流动特性,采用基于颗粒动力学理论的欧拉双流体模型进行建模研究,其中RNG k-ε 模型用于模拟湍流运动,液固两相间的曳力体现相间耦合作用。结果表明,弯头处出现了明显的二次流现象,且速度最大值分布在偏向内侧横截面上;颗粒增大了管内水合物浆湍动能,并使弯曲段的浆液湍动能分布更均匀,弯管和水合物的存在对压能损失产生影响。在相同的水合物体积分数下,浆液压力梯度随平均流速的增加而增大;在相同的流速下,浆液压力梯度随水合物体积分数的增加出现了缓慢增长区、过渡区和快速增长区。为了对堵塞风险进行有效预警,除了考虑平均流速等因素,还需要从水合物生长过程中微观特性变化的角度对压降分区和流变多样性进行探索。

本文引用格式

江国业 , 王晓娅 . 水平弯管内水合物浆的流动特性[J]. 科技导报, 2015 , 33(2) : 64 -68 . DOI: 10.3981/j.issn.1000-7857.2015.02.009

Abstract

In order to study the flow characteristics of hydrate slurry, two-fluid Euler models based on the kinetic theory of the granular flow are established, in which the RNG k-ε model is used to simulate the turbulence movement and the drag force is used to express the interaction between the liquid phase and the solid phase. It is shown that secondary flows can clearly seen to arise in the elbow, and the maximum velocity occurs close to the inner side of the cross section; the hydrate slurry's turbulence kinetic energy in the 90° elbow is enhanced and the kinetic energy distribution is homogenized because of the hydrate particles; the presence of the elbow pipe and hydrates has a remarkable effect on the pressure energy losses. It is also shown that the pressure gradient of the hydrate slurry increases with its average velocity rising at the same hydrate's volume fraction, and that the pressure gradient of the hydrate slurry sees a slowly-growing zone, a transient zone and a rapidly-growing zone in turns with hydrate's volume fraction rising at the same velocity. The pressure gradient zoning and rheology diversity as well as the hydrate volume fraction have to be investigated from the point of microcosmic characteristics changes in hydrate's growth to early predict the pipeline plug risk.

参考文献

[1] 朱福安, 范举忠, 刘义斌. 建南气田天然气水合物的危害与防治[J]. 石 油与天然气化工, 2007, 36(6): 500-502. Zhu Fuan, Fan Juzhong, Liu Yibin. Jiannan oilfield natural gas exploitation bureau[J]. Chemical Engineering of Oil & Gas, 2007, 36(6): 500-502.
[2] 王武昌, 李玉星, 樊栓狮, 等. HCFC-141b水合物浆流动特性实验[J]. 低温工程, 2010, 176(4): 13-17. Wang Wuchang, Li Yuxing, Fan Shuanshi, et al. Study on flow behaviors of HCFC- 141b hydrate slurry[J]. Cryogenics, 2010, 176(4): 13-17.
[3] Anthony D, Laurence F, Sandrine M, et al. Rheological study of CO2 hydrate slurry in a dynamic loop applied to secondary refrigeration[J]. Chemical Engineering Science, 2008, 63: 3551-3559.
[4] 李玉星, 朱超, 王武昌, 等. 天然气水合物浆液稳定性影响因素的正交 实验[J]. 油气储运, 201l, 30(9): 685-689. Li Yuxing, Zhu Chao, Wang Wuchang, et al. Orthogonal-experimental research on stability effecting factors of hydrate slurry[J]. Oil & Gas Storage and Transportation, 2011, 30(9): 685-689.
[5] 张慧君, 付林, 高炳军. 油煤浆输送管路弯管部位液固两相流流场的 数值模拟与磨损预测[J]. 河北工业大学学报, 2011, 39(6): 66-71. Zhang Huijun, Fu Lin, Gao Bingjun. Numerical simulation of liquidsolid flows in elbows of coal- oil slurry transporting pipeline and its wear prediction[J]. Journal of Hebei University of Technology, 2011, 39 (6): 66-71.
[6] 王继红, 张腾飞, 王树刚, 等. 竖直管道内冰浆流体流动特性的数值模 拟[J]. 制冷学报, 2012, 33(2): 42-46. Wang Jihong, Zhang Tengfei, Wang Shugang, et al. Numerical simulation of ice slurry flow in a vertical pipe[J]. Journal of Refrigeration, 2012, 33(2): 42-46.
[7] Gidaspow D. Multiphase flow and fluidization:continuum and kinetic theory descriptions[M]. New York: Academic Press, 1994.
[8] Yakhot V, Orzag S A. Renormalization group analysis of turbulence: Basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-11.
[9] Adapco C D. STAR-CD methodology (Version 4.02)[M]. London: [S. l.] 2006.
[10] Marinhas S, Delahaye, A, Fournaison L. Solid fraction modelling for CO2 and CO2-THF hydrate slurries used as secondary refrigerants[J]. International Journal of Refrigeration, 2007, 30: 758-766.
[11] Crowe C, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles[M]. Boca Raton: The Chemical Rubber Company Press, 1998.
[12] 江国业, 李玉星, 王武昌. 油气藏流体水合物浆输送技术研究进展[J]. 科学技术与工程, 2011, 11(6): 1300-1303. Jiang Guoye, Li Yuxing, Wang Wuchang. State of the art on transportation technology of reservoir fluid hydrate slurry[J]. Science Technology and Engineering, 2011, 11(6): 1300-1303.
[13] Wang W C, Fan S S, Liang D Q, et al. Experimental study on flow characters of CH3CCl2F hydrate slurry[J]. International Journal of Refrigeration, 2008, 31: 371-378.
[14] 王继红, 王树刚, 张腾飞, 等. 水平90°弯管内冰浆流体流动特性的数 值模拟[J]. 高校化学工程学报, 2012, 26(4): 582-586. Wang Jihong, Wang Shugang, Zhang Tengfei, et al. Numerical simulation of ice slurry flow in a horizontal 90° elbow pipe[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(4): 582- 586.
[15] Hambric S A, Boger D A, Fahnline J B, et al. Structure- and fluidborne acoustic power sources induced by turbulent flow in 90° piping elbows[J]. Journal of Fluids and Structures, 2010, 26(1): 121-147.
[16] Parthasarathy R N, Faeth G M J. Turbulent dispersion of particles in self-generated homogeneous turbulence[J]. Journal of Fluid Mechanics, 1990, 220: 485-537.
[17] Balakin B V, Pedersen H, Kilinc Z, et al. Turbulent flow of freon R11 hydrate slurry[J]. Journal of Petroleum Science and Engineering, 2010, 70: 177-182.
[18] Hald K, Nuland S. Hydrate slurry rheology in the petroleum industry[J]. Annual Transactions of the Nordic Rheology Society, 2007, 15: 1- 7.
[19] Sinquin A, Palermo T, Peysson Y. Rheological characterization of hydrate suspensions in oil dominated system[J]. Oil & Gas Science and Technology, 2004, 59(1): 41-57.
文章导航

/