气体在多孔介质中渗流时,不仅需克服启动压力梯度,而且受气体滑脱效应的影响。基于煤层瓦斯的渗流特性,建立考虑滑脱效应的煤层瓦斯渗流模型,并对煤层瓦斯渗流过程的压力分布进行数值模拟。计算结果表明,在一定煤层深度内,与不考虑滑脱效应时煤层瓦斯压力分布相比,考虑滑脱效应对其影响显著,且随着暴露时间增长和距煤壁距离增大,其差别更为明显。滑脱因子的变化将直接影响煤层内部气体压力的分布,随着滑脱因子的增大,气体压力减小,滑脱越明显。与不考虑滑脱效应(Darcy 解)瓦斯压力分布相比,考虑滑脱效应时煤层瓦斯压力分布曲线更接近实测数据,表明在研究煤层渗流过程中须考虑滑脱效应。
Many experiments indicate that for the gas seepage in the porous media, not only the threshold pressure gradient is important, but also the slippage effects should be considered. Based on the characteristics of the gas seepage in coal seams, a nonlinear seepage mathematical model through the coal seam is built, with consideration of the threshold pressure gradient and the slippage effects, to numerically simulate the gas pressure distribution in the process of the coal seam gas seepage. It is shown that the slippage has a larger effect on the gas pressure in a certain coal seam depth, and with the increase of the depth and the passing of the time, the difference gets more obvious. The change of the slip factor b directly affects the gas pressure distribution in the coal seam, and with the increase of the slip factor, the gas pressure reduces and the slippage gets more obvious. As compared with the case without considering the slippage effect (the Darcy solution), the gas pressure distribution curves in the coal seam, with considering the slippage effect, are closer to the measured data, as is consistent to the actual gas seepage, which indicates that the slippage effect is very important in the process of the coal seam gas seepage. Some internal structural characteristics and the slippage flow mechanism in the coal seam are revealed, which will help for the theoretical prediction of the lane coal seam emission's width and for the coalbed methane industrialization in hypotonic reservoirs.
[1] 李云浩, 杨清岭, 杨鹏. 煤层瓦斯流动的数值模拟及在煤壁的应用[J]. 中国安全生产科学技术, 2007, 3(2): 74-77. Li Yunhao, Yang Qingling, Yang Peng. The numerical simulation of gas flow in the coal seam and its application to the coal wall[J]. Journal of Safety Science and Technology, 2007, 3(2): 74-77.
[2] 王轶波, 齐黎明, 马尚权, 等. 煤巷两帮卸压瓦斯带宽度理论分析及应 用[J]. 中国煤炭, 2009, 35(2): 59-61. Wang Yibo, Qi Liming, Ma Shangquan, et al. Width of destressing gas zone in coal ribs: Theoretical analysis and its application[J]. China Coal, 2009, 35(2): 59-61.
[3] 高建良, 候三中. 掘进工作面动态瓦斯压力分布及涌出规律[J]. 煤炭学 报, 2007, 32(11): 1127-1131. Gao Jianliang, Hou Sanzhong. Dynamic distribution of gas pressure and emission around a diving roadway[J]. Journal of China Coal Society, 2007, 32(11): 1127-1131.
[4] 轩朴实. 主控因素下巷帮煤体瓦斯排放带宽度计算方法研究[D]. 焦 作: 河南理工大学, 2013.Xuan Pushi. Study on the calculation method of gas emission zone width of laneway's side under the main control factors[D]. Jiaozuo: Henan Polytechnic University, 2013.
[5] Estes R K, Fulton P F. Gas slippage and permeability measurements[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956, 207(3): 338-342.
[6] 陈代殉. 渗流气体滑脱现象与渗透率变化的关系[J]. 力学学报, 2002, 34(1): 96-100. Chen Daixun. Gas slippage phenomenon and change of permeability when gas flows in tight porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34(1): 96-100.
[7] 叶礼友, 高树生, 熊伟, 等. 储层压力条件下低渗砂岩气藏气体渗流特 征[J]. 复杂油气藏, 2011, 4(1): 59-62. Ye Liyou, Gao Shusheng, Xiong Wei, et al. Percolation characteristics of gas in sandstone gas reservoir with low permeability under reservoir pressure[J]. Complex Hydrocarbon Reservoirs, 2011, 4(1): 59-62.
[8] 肖晓春, 潘一山. 低渗煤储层气体滑脱效应试验研究[J]. 岩石力学与 工程学报, 2008, 27(增2): 3509-3515. Xiao Xiaochun, Pan Yishan. Experimental study on gas slippage effects in hypotonic coal reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl 2): 3509-3515.
[9] 薛国庆, 李闽, 罗碧华, 等. 低渗透气藏低速非线性渗流数值模拟研究[J]. 西南石油大学学报, 2009, 31(2): 163-166. Xue Guoqing, Li Min, Luo Bihua, et al. Low-speed and non-linear flow through porous media numerical simulation for low-permeability gas reservoir[J]. Journal of South-west Petroleum University, 2009, 31 (2): 163-166.
[10] 彭守建, 许江, 尹光志, 等. 基质收缩效应对含瓦斯煤渗流影响的实 验分析[J]. 重庆大学学报: 自然科学版, 2012, 35(5): 109-114. Peng Shoujian, Xu Jiang, Yin Guangzhi, et al. Experimental analysis of matrix shrinkage's influence on mechanical permeability of gasfilled coal[J]. Journal of Chongqing University: Natural Science Edition, 2012, 35(5): 109-114.
[11] 杨建, 康毅力, 李前贵, 等. 致密砂岩气藏微观结构及渗流特征[J]. 力 学进展, 2008, 38(2): 229-235. Yang Jian, Kang Yili, Li Qiangui, et al. Characters of micro-structure and percolation in tight sandstone gas reservoirs[J]. Advances in Mechanics, 2008, 38(2): 229-235.
[12] 朱益华, 陶果, 方伟, 等. 低渗气藏中气体渗流Klinkenberg效应研究 进展[J]. 地球物理学进展, 2007, 22(5): 1591-1596. Zhu Yihua, Tao Guo, Fang Wei, et al. Research progress of the Klinkenberg effect in tight gas reservoir[J]. Progress in Geophysics, 2007, 22(5): 1591-1596.
[13] 朱光亚, 刘先贵, 李树铁, 等. 郝明强低渗气藏气体渗流滑脱效应影 响研究[J]. 天然气工业, 2007, 27(5): 44-47. Zhu Guangya, Liu Xiangui, Li Shutie, et al. A study of slippage effect of gas percolation in low permeability gas pools[J]. Natural Gas Industry, 2007, 27(5): 44-47.
[14] Klinkenberg L J. The permeability of porous media to liquid sand gases[J]. American Petroleum Institute Drilling and Production Practice, 1941, 3(2): 200-213.
[15] SampathK,KeighinCW.Factorsaffectinggasslippageintight sandstones of cretaceous age in the Uinta Basin[J]. Journal of Petroleum Technology, 1982, 34(11): 2715-2720.
[16] Kaluarachchi J J, Parker J C. Modeling multicomponent organic chemical transport in three fluid phase porous media[J]. Journal of Contaminant Hydrology, 1990, 5: 349-374.
[17] 王勇杰, 王昌杰, 高家碧. 低渗透多孔介质中气体滑脱行为的研究[J]. 石油学报, 1995, 16(3): 101-105. Wang Yongjie, Wang Changjie, Gao Jiabi. A research of gas slip in low permeability porous media[J]. Acta Petrolei Sinica, 1995, 16(3): 101-105.