[1] 刁丰秋, 黄美娟, 吴乃虎. 高等植物胚胎发生的分子调控[J]. 植物学 报, 2000, 42(4): 331-340. Diao Fengqiu, Huang Meijuan, Wu Naihu. Molecular regulation of higher plant embryogenesis[J]. Acta Botanica Sinica, 2000, 42(4): 331- 340.
[2] Gupta S D, Conger B V. Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass[J]. Crop Science, 1999, 39(1): 243-247.
[3] Sugiyama M. Organogenesis in vitro[J]. Current Opinion in Plant Biology, 1999, 2(1): 61-64.
[4] Zhao X Y, Su Y H, Cheng Z J, et al. Cell fate switch during in vitro plant organogenesis[J]. Journal of Integrative Plant Biology, 2008, 50 (7): 816-824.
[5] Echeverri K, Tanaka E M. Mechanisms of muscle dedifferentiation during regeneration[J]. Seminars in Cell and Developmental Biology, 2002, 13 (5): 353-360.
[6] Fehér A, Pasternak T P, Dudits D. Transition of somatic plant cells to an embryogenic state[J]. Plant Cell, Tissue & Organ Culture, 2003, 74 (3): 201-228.
[7] Zhao J, Morozova N, Williams L, et al. Two phases of chromatin decondensation during dedifferentiation of plant cells: Distinction between competence for cell fate switch and a commitment for S phase[J]. The Journal of Biological Chemistry, 2001, 276(25): 22772-22778.
[8] Valente P, Tao W, Verbelen J P. Auxins and cytokinins control DNA endoreduplication and deduplication in single cells of tobacco[J]. Plant Science, 1998, 134(2): 207-215.
[9] Grafi G. How cells dedifferentiate: A lesson from plants[J]. Developmental Biology, 2004, 268(1): 1-6.
[10] Ozawa S, Yasutani I, Fukuda H, et al. Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana[J]. Development, 1998, 125(1): 135-142.
[11] Fobert P R, Gaudin V, Lunness P, et al. Distinct classes of cdc2- related genes are differentially expressed during the cell division cycle in plants[J]. The Plant Cell, 1996, 8(9): 1465-1476.
[12] Hemerly A S, Ferreira P, de Almeida Engler J, et al. cdc2a expression in Arabidopsis is linked with competence for cell division[J]. The Plant Cell, 1993, 5(12): 1711-1723.
[13] Martinez M C, Jørgensen J E, Lawton M A, et al. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development[J]. Proceedings of the National Academy of Sciences, 1992, 89(16): 7360-7364.
[14] Shaul O, van Montagu M, Inzé D. Cell cycle control in Arabidopsis[J]. Annual Botany, 1996, 78(3): 283-288.
[15] Fuerst R A U A, Soni R, Murray J A H, et al. Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana[J]. Plant Physiology, 1996, 112(3): 1023-1033.
[16] Jamet E, Durr A, Parmentier Y, et al. Is ubiquitin involved in the dedifferentiation of higher plant cells?[J]. Cell Differentiation and Development, 1990, 29(1): 37-46.
[17] Nagata T, Ishida S, Hasezawa S, et al. Genes involved in the dedifferentiation of plant cells[J]. The International Journal of Developmental Biology, 1994, 38(2): 321-327.
[18] Chiabrera A, Hinsenkamp M, Pilla A A, et al. Cytofluorometry of electromagnetically controlled cell dedifferentiation[J]. Journal of Histochemistry & Cytochemistry, 1979, 27(1): 375-381.
[19] Williams L, Zhao J, Morozova N, et al. Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes[J]. Developmental Dynamics, 2003, 228(1): 113-120.
[20] Duval M, Hsieh T F, Kim S Y, et al. Molecular characterization of AtNAM: A member of the Arabidopsis NAC domain superfamily[J]. Plant Molecular Biology, 2002, 50(2): 237-248.
[21] Souer E, van Houwelingen A, Kloos D, et al. The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries[J]. Cell, 1996, 85(2): 159-170.
[22] Gray W M, Estelle M. Function of the ubiquitin-proteasome pathway in auxin response[J]. Trends in Biochemical Sciences, 2000, 25(3): 133-138.
[23] Hershko A. Roles of ubiquitin- mediated proteolysis in cell cycle control[J]. Current Opinion in Cell Biology, 1997, 9(6): 788-799.
[24] Peters J M. SCF and APC: The Yin and Yang of cell cycle regulated proteolysis[J]. Current Opinion in Cell Biology, 1998, 10(6): 759-768.
[25] Eberharter A, Becker P B. Histone acetylation: A switch between repressive and permissive chromatin. Second in review series on chromatin dynamics[J]. EMBO Reports, 2002, 3(3): 224-229.
[26] Cavalli G, Paro R. Chromo- domain proteins: Linking chromatin structure to epigenetic regulation[J]. Current Opinion in Cell Biology, 1998, 10(3): 354–360.
[27] Li S W, Xue L G, Xu S J, et al. Mediators, genes and signaling in adventitious rooting[J]. The Botanical Review, 2009, 75(2): 230-247.
[28] Malamy J E, Benfey P N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana[J]. Development, 1997, 124(1): 33-44.
[29] De Klerk G J, Van Der Krieken W, De Jong J C. Review the formation of adventitious roots: New concepts, new possibilities[J]. In Vitro Cellular & Developmental Biology-Plant, 1999, 35(3): 189-199.
[30] Coudert Y, Périn C, Courtois B, et al. Genetic control of root development in rice, the model cereal[J]. Trends in Plant Science, 2010, 15(4): 219-226.
[31] Kitomi Y, Ogawa A, Kitano H, et al. CRL4 regulates crown root formation through auxin transport in rice[J]. Plant Root, 2008, 2: 19- 28.
[32] Liu S, Wang J, Wang L, et al. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family[J]. Cell Research, 2009, 19(9): 1110-1119.
[33] Bhalerao R P, Eklöf J, Ljung K, et al. Shoot derived auxin is essential for early lateral root emergence in Arabidopsis seedlings[J]. The Plant Journal, 2002, 29(3): 325-332.
[34] Himanen K, Boucheron E, Vanneste S, et al. Auxin- mediated cell cycle activation during early lateral root initiation[J]. The Plant Cell, 2002, 14(10): 2339-2351.
[35] Stals H, Inzé D. When plant cells decide to divide[J]. Trends in Plant Science, 2001, 6(8): 359-364.
[36] Blakesley D, Weston G D, Hall J F. The role of endogenous auxin in root initiation. Part I. Evidence from studies on auxin application, and analysis of endogenous levels[J]. Plant Growth Regulation, 1991, 10 (4): 341-353.
[37] Boerjan W, Cervera M T, Delarue M, et al. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction[J]. The Plant Cell, 1995, 7(9): 1405-1419.
[38] Casimiro I, Marchant A, Bhalerao R P, et al. Auxin transport promotes Arabidopsis lateral root initiation[J]. The Plant Cell, 2001, 13(4): 843- 852.
[39] Laskowski M, Grieneisen V A, Hofhuis H, et al. Root system architecture from coupling cell shape to auxin transport[J]. PLoS Biology, 2008, 6(12): e307.
[40] Ivanchenko M G, Coffeen W C, Lomax T L, et al. Mutations in the diageotropica (dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle[J].The Plant Journal, 2006, 46(3): 436-447.
[41] Tyburski J, Tretyn A. The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings[J]. Plant Growth Regulation, 2004, 42(1): 39-48.
[42] Benkova E, Hejatko J. Hormone interactions at the root apical meristem[J]. Plant Molecular Biology, 2009, 69(4): 383-396.
[43] Laplaze L, Benkova E, Casimiro I, et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation[J]. The Plant Cell, 2007, 19(12): 3889-3900.
[44] To J P C, Haberer G, Ferreira F J, et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling[J]. The Plant Cell, 2004, 16(3): 658-671.
[45] Leibfried A, To J P C, Busch W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071): 1172-1175.
[46] Coudert Y, Périn C, Courtois B, et al. Genetic control of root development in rice, the model cereal[J]. Trends in Plant Science, 2010, 15(4): 219-226.
[47] IvanchenkoMG,MudayGK,DubrovskyJG.Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana[J]. The Plant Journal, 2008, 55(2): 335-347.
[48] Negi S, Ivanchenko M G, Muday G K. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana[J]. The Plant Journal, 2008, 55(2): 175-187.
[49] Huang Y, Li H, Hutchison C E, et al. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis[J]. The Plant Journal, 2003, 33(2): 221-233.
[50] Kieber J J, Rothenberg M, Roman G, et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases[J]. Cell, 1993, 72(3): 427-441.
[51] Negi S, Sukumar P, Liu X, et al. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato[J]. The Plant Journal, 2010, 61(1): 3-15.
[52] Howell S H, Lall S, Che P. Cytokinins and shoot development[J]. Trends in Plant Science, 2003, 8(9): 453-459.
[53] Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6): 635-644.
[54] Su Y H, Zhao X Y, Liu Y B, et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis[J]. The Plant Journal, 2009, 59(3): 448- 460.
[55] Cheng, Z J, Zhu S S, Gao X Q, et al. Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis[J]. Plant Cell Reports, 2010, 29(8): 927-933.
[56] Bouchabké-Coussa O, Obellianne M, Linderme D, et al. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro[J]. Plant Cell Reports, 2013, 32(5): 675-686.
[57] Hicks G S. Shoot induction and organogenesis in vitro: A developmental perspective[J]. In Vitro Celluar & Biology, 1994, 30(1): 10-15.
[58] Che P, Gingerich D J, Lall S, et al. Global and hormone-induced gene expression changes during shoot development in Arabidopsis[J]. The Plant Cell, 2002, 14(11): 2771-2785.
[59] Frugis G, Giannino D, Mele G, et al. Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot- like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins[J]. Plant Physiology, 2001, 126(4): 1370-1380.
[60] Hwang I, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction[J]. Nature, 2001, 413(6854): 383-389.
[61] Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction[J]. Science, 1996, 274(5289): 982-985.
[62] Katayama N, Koi S, Kato M. Expression of SHOOT MERISTEMLESS, WUSCHEL, and ASYMMETRIC LEAVES1 homologs in the shoots of Podostemaceae: Implications for the evolution of novel shoot organogenesis[J]. The Plant Cell, 2010, 22(7): 2131-2140.
[63] Daimon Y, Takabe K, Tasaka M. The CUP- SHAPED COTYLEDON genes promote adventitious shoot formation on calli[J]. Plant and Cell Physiology, 2003, 44(2): 113-121.
[64] Fletcher J C. Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem[J]. BioEssays, 2002, 24(1): 27-37.
[65] Banno H, Ikeda Y, Niu Q W, et al. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration[J]. The Plant Cell, 2001, 13(12): 2609-2618.
[66] Schaller G E, Bleecker A B. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene[J]. Science, 1995, 270(5243): 1809-1811.
[67] Brandstatter I, Kieber J J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis[J]. The Plant Cell, 1998, 10(6): 1009-1019.
[68] Zhang S, Williams-Carrier R, Jackson D, et al. Expression of CDC2Zm and KNOTTED1 during in vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barley (Hordeum vulgare L.)[J]. Planta, 1998, 204(4): 542-549.
[69] Thomas C, Meyer D, Himber C, et al. Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis[J]. Plant Physiology and Biochemistry, 2004, 42(1): 35- 42.
[70] Yasutani I, Ozawa S, Nishida T, et al. Isolation of temperature-sensitive mutants of Arabidopsis thaliana that are defective in the redifferentiation of shoots[J]. Plant Physiology, 1994, 105(3): 815-822.
[71] Long J A, Moan E I, Medford J I, et al. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis[J]. Nature, 1996, 379(6560): 66-69.
[72] Kaleikau E K, Sears R G, Gill B S. Monosomic analysis of tissue culture response in wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 1989, 78(5): 625-632.
[73] Reisch B, Bingham E T. The genetic control of bud formation from callus cultures of diploid alfalfa[J]. Plant Science Letters, 1980, 20(1): 71-77.
[74] Hodges T K, Kamo K K, Imbrie C W, et al. Genotype specificity of somatic embryogenesis and regeneration in maize[J]. Biotechnology, 1986, 4(3): 219-223.
[75] Ma H, Gu M, Liang G H. Plant regeneration from cultured immature embryos of Sorghum bicolor (L.) Moench[J]. Theoretical and Applied Genetics, 1987, 73(3): 389-394.
[76] Mathias R J, Atkinson E. In vitro expression of genes affecting whole plant phenotype - the effect of Rht/Gai alleles on the callus culture response of wheat (Triticum aestivum L. em. Thell)[J]. Theoretical and Applied Genetics, 1988, 75(3): 474-479.
[77] Lazar M D, Chen T H H, Scoles G J, et al. Immature embryo and anther culture of chromosome addition lines of rye in Chinese Spring wheat[J]. Plant Science, 1987, 51(1): 77-81.
[78] Henry Y, De Buyser J. Effect of the 1B/1R translocation on anther culture ability in wheat (Triticum aestivum L.)[J]. Plant Cell Reports, 1985, 4(6): 307-310.
[79] Mathias R J, Fukui K. The effect of specific chromosome and cytoplasmic substitutions on the tissue culture response of wheat (Triticum aestivum) callus[J]. Theoretical and Applied Genetics, 1986, 71(6): 797-800.
[80] Felsenburg T, Feldman M, Galun E. Aneuploid and alloplasmic lines as tools for the study of nuclear and cytoplasmic control of culture ability and regeneration of scutellar calli from common wheat[J]. Theoretical and Applied Genetics, 1987, 74(6): 802-810.
[81] Galiba G, Kovacs G, Sutka J. Substitution analysis of plant regeneration from callus culture in wheat[J]. Plant Breeding, 1986, 97(3): 261-263.
[82] Amer I M B, Worland A J, Korzun V, et al. Genetic mapping of QTL controlling tissue- culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers[J]. Theoretical and Applied Genetics, 1997, 94(8): 1047-1052.
[83] Jia H Y, Yu J, Yi D L, et al. Chromosomal intervals responsible for tissue culture response of wheat immature embryos[J]. Plant Cell, Tissue & Organ Culture, 2009, 97(2): 159-165.
[84] Nishimura A, Ashikari M, Lin S, et al. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33): 11940-11944.
[85] Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta, 2005, 222(1): 107-117.
[86] Singla B, Khurana J, Khurana P. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum[J]. Plant Cell Reports, 2008, 27(5): 833-843.
[87] Zhang S, Liu X, Lin Y, et al. Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture[J]. Plant Cell, Tissue & Organ Culture, 2011, 105(1): 29-37.
[88] Lucau-Danila A, Laborde L, Legrand S, et al. Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.)[J]. BMC Plant Biology, 2010, 10(1): 122-136.
[89] 叶兴国, 佘茂云, 王珂, 等. 植物组织培养再生相关基因鉴定、克隆和 应用研究进展[J]. 作物学报, 2012, 38(2): 191-201. Ye Xingguo, She Maoyun, Wang Ke, et al. Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture[J]. Acta Agronomica Sinica, 2012, 38(2): 191-201.