综述文章

微生物燃料电池中碳基阳极材料和表面修饰碳基阳极材料研究进展

  • 苏暐光 ,
  • 薛屏 ,
  • 马保军
展开
  • 宁夏大学省部共建天然气转化国家重点实验室培育基地, 银川750021
苏暐光,讲师,研究方向为多相催化反应,电子信箱:weiguangsu@nxu.edu.cn

收稿日期: 2014-08-15

  修回日期: 2014-10-30

  网络出版日期: 2015-03-03

基金资助

中国科学院大连化学物理研究所催化基础国家重点实验室开放课题(N-11-02)

Progress on carbon materials and surface modified carbon materials of anode for microbial fuel cells

  • SU Weiguang ,
  • XUE Ping ,
  • MA Baojun
Expand
  • State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, China

Received date: 2014-08-15

  Revised date: 2014-10-30

  Online published: 2015-03-03

摘要

随着能源匮乏和水污染问题的加剧,迫切需要寻找新的能源开发和利用技术。微生物燃料电池(MFCs)作为一种新兴的高效生物质能利用方式,可以将有机废水中的化学能直接转化为电能,具有去污和产能双重功能。产电微生物附着的阳极对MFCs 性能具有重要影响。碳基材料成本低、导电性高且生物相容性好,被广泛用于MFCs 的阳极材料。分别从传统碳材料、三维多孔碳基材料、化学法表面处理改性、碳纳米材料修饰和导电聚合物修饰等方面综述了MFCs 碳基阳极材料的最新研究成果,探讨了三维多孔结构和表面修饰促进MFCs 产电性能的微观本质,并对碳基阳极材料的应用前景进行分析和展望。

本文引用格式

苏暐光 , 薛屏 , 马保军 . 微生物燃料电池中碳基阳极材料和表面修饰碳基阳极材料研究进展[J]. 科技导报, 2015 , 33(3) : 105 -109 . DOI: 10.3981/j.issn.1000-7857.2015.03.018

Abstract

Great attentions have been paid to the new technology of energy exploration and utilization due to the increasingly serious energy crisis and water pollution. Microbial fuel cells (MFCs) as a novel and efficient bioenergy utilization technology can convert chemical energy contained in organic wastewater into electricity directly. MFCs are able to treat wastewater and generate electricity energy simultaneously. Anode materials play a crucial role in determining MFCs' performance. The carbon materials are widely used as anode of MFCs because of their low price, superiority in conductivity, and good biocompatibility. The recent research progress on carbon anode materials of MFCs is reviewed in the following five aspects: the common carbon materials, three-dimensional porous carbon materials, surface chemical modification, carbon nanomaterials modification, and conductive polymer modification. The influence of three-dimensional porous structure and surface modification on electricity production performance of MFCs is discussed. Finally, the application prospects of carbon anode materials for MFCs are presented.

参考文献

[1] Ben Liew K, Daud W R W, Ghasemi M, et al. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4870-4883.
[2] Franks A E, Nevin K P. Microbial fuel cells, a current review[J]. Energies, 2010, 3(5): 899-919.
[3] Logan B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381.
[4] Logan B E, Regan J M. Microbial fuel cells: Challenges and applications [J]. Environmental Science and Technology, 2006, 40(17): 5172-5180.
[5] Ahmad F, Atiyeh M N, Pereira B, et al. A review of cellulosic microbial fuel cells: Performance and challenges[J]. Biomass & Bioenergy, 2013, 56: 179-188.
[6] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298.
[7] Ghangrekar M M, Shinde V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J]. Bioresource Technology, 2007, 98(15): 2879-2885.
[8] 王鑫, 李楠, 高宁圣洁, 等. 微生物燃料电池碳基阳极材料的研究进 展[J]. 中国给水排水, 2012, 28(22): 5-8. Wang Xin, Li Nan, Gao Ningshengjie, et al. Research progress in carbon anode materials for microbial fuel cells[J]. China Water & Wastewater, 2012, 28(22): 5-8.
[9] 谢珊, 欧阳科, 丘露, 等. 微生物燃料电池中碳材料改性阳极和碳基 复合材料阳极的最新研究进展[J]. 广东化工, 2014, 41(10): 76-77. Xie Shan, Ouyang Ke, Qiu Lu, et al. Research progresses on the modified carbon materials and carbon-based composites in the anode materials of microbial fuel cells[J]. Guangdong Chemical Industry, 2014, 41(10): 76-77.
[10] Zhou M, Chi M, Luo J, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435.
[11] Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells [J]. Bioresource Technology, 2007, 98(13): 2568-2577.
[12] Wang X, Cheng S, Feng Y, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science and Technology, 2009, 43(17): 6870-6874.
[13] Li F X, Sharma Y, Lei Y, et al. Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation[J]. Applied Biochemistry and Biotechnology, 2010, 160(1): 168-181.
[14] Ahn Y, Logan B E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures[J]. Bioresource Technology, 2010, 101(2): 469-475.
[15] Gao X, Zhang Y Z, Li X W, et al. Novel graphite sheet used as an anodic material for high-performance microbial fuel cells[J]. Materials Letters, 2013, 105: 24-27.
[16] Chen S L, Hou H Q, Harnisch F, et al. Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells[J]. Energy & Environmental Science, 2011, 4: 1417-1421.
[17] He G H, Gu Y L, He S J, et al. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells[J]. Bioresource Technology, 2011, 102(22): 10763-10766.
[18] Mink J E, Rojas J P, Logan B E, et al. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell[J]. Nano Letters, 2012, 12(2): 791-795.
[19] Xie X, Yu G H, Liu N, et al. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells[J]. Energy & Environmental Science, 2012, 5(5): 6862-6866.
[20] Karra U, Manickam S S, McCutcheon J R, et al. Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs) [J]. International Journal of Hydrogen Energy, 2013, 38(3): 1588-1597.
[21] Manickam S S, Karra U, Huang L W, et al. Activated carbon nanofiber anodes for microbial fuel cells[J]. Carbon, 2013, 53: 19-28.
[22] Feng Y J, Yang Q, Wang X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1841-1844.
[23] Saito T, Mehanna M, Wang X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology, 2011, 102(1): 395-398.
[24] Zhou M H, Chi M L, Wang H Y, et al. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells[J]. Biochemical Engineering Journal, 2012, 60: 151-155.
[25] Tang X H, Guo K, Li H R, et al. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes[J]. Bioresource Technology, 2011, 102(3): 3558-3560.
[26] Liu J, Liu J F, He W H, et al. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. Journal of Power Sources, 2014, 265: 391-396.
[27] Wei J C, Liang P, Zuo K C, et al. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells[J]. ChemSusChem, 2012, 5(6): 1065-1070.
[28] Peng L, You S J, Wang J Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis[J]. Biosensors & Bioelectronics, 2009, 25(5): 1248-1251.
[29] Sun J J, Zhao H Z, Yang Q Z, et al. A novel layer-by-layer selfassembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell[J]. Electrochimica Acta, 2010, 55(9): 3041-3047.
[30] Xie X, Hu L B, Pasta M, et al. Three-dimensional carbon nanotubetextile anode for high-performance microbial fuel cells[J]. Nano Letters, 2011, 11(1): 291-296.
[31] Zhao Y, Watanabe K, Hashimoto K. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells[J]. Physical Chemistry Chemical Physics, 2011, 13(33): 15016-15021.
[32] Lamp J L, Guest J S, Naha S, et al. Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells [J]. Journal of Power Sources, 2011, 196(14): 5829-5834.
[33] Chou H T, Lee H J, Lee C Y, et al. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold[J]. Bioresource Technology, 2014, 169: 532-536.
[34] Jiang D Q, Li B K. Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs)[J]. Water Science and Technology, 2009, 59(3): 557-563.
[35] Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources, 2007, 170(1): 79-84.
[36] Zou Y J, Xiang C L, Yang L N, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4856-4862.
[37] Zhao Y, Watanabe K, Nakamura R, et al. Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells[J]. Chemistry-A European Journal, 2010, 16(17): 4982-4985.
[38] Yuan Y, Zhou S G, Liu Y, et al. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for highperformance microbial fuel cells[J]. Environmental Science and Technology, 2013, 47(24): 14525-14532.
文章导航

/