本刊专稿

超分辨率荧光显微技术——解析2014年诺贝尔化学奖

  • 席鹏 ,
  • 孙育杰
展开
  • 1. 北京大学工学院, 北京100871;
    2. 北京大学生命科学学院, 北京100871
席鹏,研究员,研究方向为超分辨率光学显微技术,电子信箱:xipeng@pku.edu.cn

收稿日期: 2014-11-03

  修回日期: 2014-12-06

  网络出版日期: 2015-03-19

Super-resolution fluorescent microscopy: commentary on the 2014 Nobel Prize in Chemistry

  • XI Peng ,
  • SUN Yujie
Expand
  • 1. College of Engineering, Peking University, Beijing 100871, China;
    2. School of Life Sciences, Peking University, Beijing 100871, China

Received date: 2014-11-03

  Revised date: 2014-12-06

  Online published: 2015-03-19

摘要

2014 年诺贝尔化学奖授予Eric Betzig,Stefan W. Hell 和William E. Moerner3 位科学家,以表彰他们在超分辨率荧光显微成像技术方面的重大贡献。本文从显微镜分辨率的起因入手,对超分辨荧光显微技术进行了深入阐述。此外,对光学显微技术的发展前景进行展望。

本文引用格式

席鹏 , 孙育杰 . 超分辨率荧光显微技术——解析2014年诺贝尔化学奖[J]. 科技导报, 2015 , 33(4) : 17 -21 . DOI: 10.3981/j.issn.1000-7857.2015.04.002

Abstract

The 2014 Nobel Prize in Chemistry is awarded to three scientists (Eric Betzig, Stefan W. Hell and William E. Moerner), for the development of super-resolved fluorescence microscopy. Based on the principle of the resolution in optical microscopy, we gave an in-depth analysis of the origin of super-resolution microscopy. We also present an outlook for the future development of optical microscopy.

参考文献

[1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.
[2] Willig K I, Kellner R R, Medda R, et al. Nanoscale resolution in GFPbased microscopy[J]. Nature Methods, 2006, 3(9): 721-723.
[3] Westphal V, Rizzoli S, Lauterbach M, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320 (5873): 246.
[4] Berning S, Willig K I, Steffens H, et al. Nanoscopy in a living mouse brain [J]. Science, 2012, 335(6068): 551-551.
[5] Betzig E, Patterson G H, Sougrat R, et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution[J]. Science, 2006, 313(5793): 1642-1645.
[6] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3 (10): 793-796.
[7] Hess S T, Girirajan T P K, Mason M D. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272.
[8] Moerner W, Kador L. Optical detection and spectroscopy of single molecules in a solid[J]. Physical Review Letters, 1989, 62(21): 2535.
[9] Dickson R M, Cubitt A B, Tsien R Y, et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein[J]. Nature, 1997, 388(6640): 355-358.
[10] Betzig E. Proposed method for molecular optical imaging[J]. Optics Letters,1995,20(3):237-239.
[11] Liu Y, Ding Y, Alonas E, et al.Santangelo P J, Jin D, et al. Achieving λ/10 Resolution CW STED Nanoscopy with a Ti: Sapphire Oscillator[J]. PLoS One, 2012, 7(6): e40003.
[12] Xie H, Liu Y, Santangelo P J, et al. Analytical description of highaperture STED resolution with 0-2pi vortex phase modulation[J]. Journal of Optical Society of America A, 2013, 30(8): 1640-1645.
[13] Yang X, Tzeng Y-K, Zhu Z, et al. Sub-diffraction imaging of nitrogenvacancy centers in diamond by stimulated emission depletion and structured illumination [J]. RSC Advances, 2014, 4: 11305-11310.
[14] Wang Y, Kuang C, Li S, et al. A 3D aligning method for stimulated emission depletion microscopy using fluorescence lifetime distribution
[J]. Microscopy Research and Technique, 2014, 77(11): 935-940.
[15] Yu J, Yuan J, Zhang X, et al. Nanoscale imaging with an integrated system combining stimulated emission depletion microscope and atomic force microscope[J]. Chinese Science Bulletin, 2013, 58(33): 4045-4050.
[16] Zong W, Zhao J, Chen X, et al. Large-field high-resolution twophoton digital scanned light-sheet microscopy[J]. Cell Research, 2014, 25: 254-257.
[17] Liu Z, Xing D, Su Q P, et al. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space[J]. Nature Communications, 2014, 5: 4443.
[18] Chang H, Zhang M, Ji W, et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications[J]. Proceedings of the National Academy of Sciences, 2012, 109(12): 4455-4460.
[19] Quan T, Li P, Long F, et al. Ultra-fast, high-precision image analysis for localization-based super resolution microscopy[J]. Optics Express, 2010, 18(11): 11867-11876.
[20] Dan D, Lei M, Yao B, et al. DMD-based LED-illumination Superresolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3: 1116.
[21] Chen X, Zeng Z, Wang H, et al. Three dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuation probes[J]. Nano Research, 2015: doi: 10.1007/ s12274-015-0736-8.
[22] Zeng Z, Chen X, Wang H, et al. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging[J]. Scientific Reports, 2015, 5: 8359.
[23] Garini Y, Vermolen B J, Young I T. From micro to nano: recent advances in high-resolution microscopy[J]. Current Opinion in Biotechnology, 2005, 16(1): 3-12.
[24] Chmyrov A, Keller J, Grotjohann T, et al. Nanoscopy with more than 100,000 'doughnuts'[J]. Nature Methods, 2013, 10(8): 737-740.
[25] Chen X, Xi P. Hundred-thousand light holes push nanoscopy to go parallel[J]. Microscopy Research and Technique, 2014, 78(1): 8-10.
[26] Mappes T, Jahr N, Csaki A, et al. The Invention of Immersion Ultramicroscopy in 1912—The Birth of Nanotechnology[J] Angewandte Chemie International Edition, 2012, 51(45): 11208-11212.
[27] Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 2004, 305(5686): 1007-1009.
[28] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 346(6208): 1257998.
文章导航

/