针对华能集团重庆珞璜电厂煤粉炉粉煤灰的利用问题,采用XRF、XRD、Siroquant 定量、SEM-EDS 及光学显微镜等技术手段,在深入分析煤粉炉粉煤灰的岩石学、矿物学、元素地球化学特征的基础上,对此类粉煤灰的微珠进行浮沉、弱磁选和气流分级等精细化分选实验研究。结果显示,以水为介质的浮沉实验可获得质量分数0.15%的漂珠;磁场强度208×103 A/m 湿式弱磁选实验可获得质量分数14.8%、Fe2O3含量44.65%的磁珠;气力旋流分级实验可获得中值粒径分别为89.6、40.2、21.3、12.7、8.1、4.9 μm 共6 个粒度级的粉煤灰微珠产品,表明通过精细化分选获得的粉煤灰微珠产品能够适应多种领域的应用,显著提高此类粉煤灰的高值利用率。
The petrological, mineralogical and chemical characteristics of the fly ash from Luohuang coal-fired power plant of Huaneng Group in Chongqing, China were studied using XRF, XRD, Siroquant, SEM-EDS, and optical microscope. Experiments of sink-float separation, magnetic separation and size grading were carried out based on analyses of those characteristics for improving the utilization rate and added value of the fly ash. As the experimental result indicated, cenospheres of 0.15% were separated by means of the water-medium sink-float separation first; then magnetic microspheres (with Fe2O3 content of 44.65%) were available through the wet low-intensity magnetic (260 mT) separation; finally an air classification of the remaining non-magnetic microspheres was applied to obtain microspheres with six different size fraction: 89.6, 40.2, 21.3, 12.7, 8.1 and 4.9 μm. According to the above fine separation procedure, a variety of fly ash sphere products adapting to special application fields can be acquired, improving both the utilization rate and added economic value of Luohuang fly ash. Meanwhile, the environmental pressure caused by the fly ash will be relieved effectively.
[1] Blissett R S, Rowson N A. A review of the multi-component utilisation of coal fly ash[J]. Fuel, 2012, 97(1): 1-23.
[2] 姚志通. 固体废弃物粉煤灰的资源化利用[D]. 杭州: 浙江大学, 2010. Yao Zhitong. Sesource utilization of solid waste fly ash[D]. Hangzhou: Zhejiang University, 2010.
[3] 杨久俊, 黄明, 张磊, 等. 粉煤灰微珠分离提取与深加工的初步研究[J]. 新型建筑材料, 2003(8): 14-16. Yang Jiujun, Huang Ming, Zhang Lei, et al. A preliminary study on the extraction and deep processing of fly ash cenosphere[J]. New Building Material, 2003(8): 14-16.
[4] 陈胜利, 李炳炎, 杨久俊, 等. 利用粉煤灰资源分离提取微珠技术与设备的研究及应用[J]. 砖瓦, 2004(1): 40-43. Chen Shengli, Li Bingyan, Yang Jiujun, et al. Research and application of technology and equipment for extraction and separation of bead from the fly ash resource[J]. Brick, 2004 (1): 40-43.
[5] Dai S F, Zhou Y P, Ren D Y, et al. Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing, southwestern China[J]. Science in China Series D: Earth Sciences, 2007, 50(5): 678-688.
[6] Dai S F, Li J T, Jiang Y F, et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions[J/OL]. International Journal of Coal Geology (2014-12-03) [2014-12-03]. http://www.sciencedirect.com/science/ article/pii/S0166516214002626.
[7] 王福元, 吴正严. 粉煤灰利用手册[M]. 北京: 中国电力出版社, 2004. Wang Fuyuan, Wu Zhengyan. Fly ash Utilization Handbook[M]. Beijing: China Power Press, 2004.
[8] GroppoJ,HonakerR.Economicalrecoveryofflyash-derivedmagnetics and evaluation for coal cleaning[C/OL]// 2009 World of Coal Ash Conference[2014-06-21]. http://www.flyash.info/2009/040-groppo 2009. pdf.
[9] Weidenfeller B, Höfer M, Schilling F. Thermal and electrical properties of magnetite filled polymers[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1041-1053.
[10] 杨赞中, 刘玉金, 杨赞国, 等. 热电厂粉煤灰漂珠的物化性能及应用[J]. 建材技术与应用, 2002(6): 13-16. Yang Zanzhong, Liu Yujin, Yang Zanguo, et al. The physical and chemical properties and application of fly ash floating beads in thermal power plant [J]. Building Materials Technology and Application, 2002(6): 13-16.
[11] Chand N, Sharma P, Fahim M. Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene [J]. Materials Science and Engineering: A, 2010, 527(21): 5873-5878.
[12] Luong D D, Gupta N, Rohatgi P K. The high strain rate compressive response of Mg-Al alloy/fly Ash cenosphere composites[J]. Journal of Material, 2011, 63(2): 48-52.
[13] Rohatgi P K, Gupta N, Schultz B F, et al. The synthesis, compressive properties, and applications of metal matrix syntactic foams [J]. Journal of the Minerals, 2011, 63(2): 36-42.
[14] 陈树义. 国外粉煤灰在建材工业中的开发应用[J]. 粉煤灰综合利用, 1990(2): 27-34. Chen Shuyi. Development and application of fly ash in the overseas building materials industry[J]. Fly Ash Comprehensive Utilization, 1990 (2): 27-34.
[15] 杨久俊, 黄明. 粉煤灰的高附加值精细加工设备与技术[C]//中国首届商品粉煤灰及磨细矿渣加工与应用技术交流大会论文集. 北京: 中国资源综合利用协会粉煤灰专业委员会, 2003: 6-12. Yang Jiujun, Huang Ming. High value-added fine processing equipment and technology of fly ash[C]//The 1st Conference of Processing and Application Technology Exchange of Chinese Commercial Fly Ash and Ground Slag. Beijing: Fly Ash Committee of China Resources Comprehensive Utilization Association, 2003: 6-12.
[16] 刘伯元, 黄世鲜, 江广成. 超细玻璃微珠的研究[C]//第九届全国粉体工程学术会暨相关设备、产品交流会论文专辑. 北京: 北京粉体技术协会, 2003: 5-13. Liu Boyuan, Huang Shixian, Jiang Guangcheng. Research on the ultrafine fly ash microspheres[C]// The 9th National Powder Engineering Conference and Exchange Meeting of related Equipment and Products. Beijing: Beijing Powder Technology Association, 2003: 5-13.
[17] Field M A, Gill D W, Morgan B B, et al. Combustion of pulverized coal[R]. Leatherhead: The British Coal Utilization Research Association, 1967.
[18] Padia A K S. The behavior of ash in pulverized coal under simulated combustion conditions[D]. Massachusetts: Massachusetts Institute of Technology, 1976.