[1] Dorozhkin S V. Calcium orthophosphates[J]. Journal of Materials Science, 2007, 42(4): 1061-1095.
[2] Dorozhkin S V. Calcium orthophosphates in nature, Biology and Medicine[J]. Materials, 2009, 2(2): 399-498.
[3] Palmer L C, Newcomb C J, Kaltz S R, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel[J]. Chemical Reviews, 2008, 108(11): 4754-4783.
[4] Cai Y R, Tang R K. Calcium phosphate nanoparticles in biomineralization and biomaterials[J].JournalofMaterialsChemistry,2008,18:3775-3787.
[5] Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates[J]. Angewandte Chemie International Edition, 2002, 41: 3130-3146.
[6] Chen F, Zhu Y J, Wu J, et al. Nanostructured calcium phosphates: Preparation and their application in biomedicine[J]. Nano Biomedicine and Engineering, 2012, 4(1): 41-49.
[7] Anselme K. Osteoblast adhesion on biomaterials[J]. Biomaterials, 2000, 21: 667-681.
[8] Valletregi M. Calcium phosphates as substitution of bone tissues[J]. Progress in Solid State Chemistry, 2004, 32(1/2): 1-31.
[9] Wang K W, Zhou L Z, Sun Y, et al. Calcium phosphate/PLGA-mPEG hybrid porous nanospheres: A promising vector with ultrahigh gene loading and transfection efficiency[J]. Journal of Materials Chemistry, 2010, 20(6): 1161-1166.
[10] Wu G J, Zhou L Z, Wang K W, et al. Hydroxylapatite nanorods: An efficient and promising carrier for gene transfection[J]. Journal of Colloid and Interface Science, 2010, 345(2): 427-432.
[11] Tang Q L, Zhu Y J, Wu J, et al. Calcium phosphate drug nanocarriers with ultrahigh and adjustable drug-loading capacity: One-step synthesis, in situ drug loading and prolonged drug release[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7(4): 428-434.
[12] Qi C, Zhu Y J, Zhao X Y, et al. High surface area carbonate apatite nanorod bundles: Surfactant-free sonochemical synthesis and drug loading and release properties[J]. Materials Research Bulletin, 2013, 48(4): 1536-1540.
[13] Lin K L, Wu C T. Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape[J]. Acta Biomaterialia, 2014, 10 (10): 4071-4102.
[14] Chen F, Zhu Y J. Multifunctional Calcium Phosphate Nanostructured Materials and Biomedical Applications[J]. Current Nanoscience, 2014, 10: 465-485.
[15] Chen X, Tang Q L, Zhu Y J, et al. Synthesis and antibacterial property of zinc loaded hydroxyapatite nanorods[J]. Materials Letters, 2012, 89: 233-235.
[16] Zhao X Y, Zhu Y J, Chen F, et al. Calcium phosphate nanocarriers dual-loaded with bovine serum albumin and ibuprofen: facile synthesis, sequential drug loading and sustained drug release[J]. Chemistry-An Asian Journal, 2012, 7(7): 1610-1615.
[17] Cao S W, Zhu Y J, Wu J, et al. Preparation and sustained-release property of triblock copolymer/calcium phosphate nanocomposite as nanocarrier for hydrophobic drug[J]. Nanoscale Research Letters, 2010, 5(4): 781-785.
[18] Tang Q L, Zhu Y J, Duan Y R, et al. Porous nanocomposites of PEGPLA/ calcium phosphate: room-temperature synthesis and its application in drug delivery[J]. Dalton Transactions, 2010, 39(18): 4435-4439.
[19] Chen F, Zhu Y J, Zhang K H, et al. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers[J]. Nanoscale Research Letters, 2011, 6(1): 67-75.
[20] Wang K W, Zhu Y J, Chen F, et al. Calcium phosphate/block copolymer hybrid porous nanospheres: Preparation and application in drug delivery[J]. Materials Letters, 2010, 64(21): 2299-2301.
[21] Shang H B, Chen F, Wu J, et al. Multifunctional biodegradable terbiumdoped calcium phosphate nanoparticles: facile preparation, pHsensitive drug release and in vitro bioimaging[J]. RSC Advances, 2014, 4: 53122-53129.
[22] Zhou R, Xu W, Chen F, et al. Amorphous calcium phosphate nanospheres/ polylactide composite coated tantalum scaffold: Facile preparation, fast biomineralization and subchondral bone defect repair application[J]. Colloids and Surfaces B: Biointerfaces, 2014, 123: 236-245.
[23] Zhao X Y, Zhu Y J, Chen F, et al. Calcium phosphate hybrid nanoparticles: Self-assembly formation, characterization, and application as an anticancer drug nanocarrier[J]. Chemistry-An Asian Journal, 2013, 8 (6): 1306-1312.
[24] Chen F, Huang P, Zhu Y J, et al. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging[J]. Biomaterials, 2012, 33(27): 6447-6455.
[25] Ma M Y, Zhu Y J, Li L, et al Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery[J]. Journal of Materials Chemistry, 2008, 18(23): 2722-2727.
[26] Zhao X Y, Zhu Y J, Zhao J, et al. Hydroxyapatite nanosheet-assembled microspheres: Hemoglobin-templated synthesis and adsorption for heavy metal ions[J]. Journal of Colloid and Interface Science, 2014, 416: 11-18.
[27] Qi C, Zhu Y J, Lu B Q, et al. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption[J]. Journal of Materials Chemistry, 2012, 22(42): 22642-22650.
[28] Lu B Q, Zhu Y J, Chen F. Highly flexible and nonflammable inorganic hydroxyapatite paper[J]. Chemistry-A European Journal, 2014, 20(5): 1242-1246.
[29] Lu B Q, Zhu Y J, Chen F, et al. Solvothermal transformation of a calcium oleate precursor into large-sized highly ordered arrays of ultralong hydroxyapatite microtubes[J]. Chemistry-A European Journal, 2014, 20 (23): 7116-7121.
[30] Ma M G, Zhu Y J, Chang J. Solvothermal preparation of hydroxyapatite microtubes in water/N, N-dimethylformamide mixed solvents[J]. Materials Letters, 2008, 62(10/11): 1642-1645.
[31] Chen F, Zhu Y J, Wang K W, et al. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures[J]. CrystEngComm, 2011, 13(6): 1858-1863.
[32] Zhu Y J, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase[J]. Chemical Reviews, 2014, 114: 6462-6555.
[33] Tang Q L, Wang K W, Zhu Y J, et al. Single-step rapid microwaveassisted synthesis of polyacrylamide-calcium phosphate nanocomposites in aqueous solution[J]. Materials Letters, 2009, 63(15): 1332-1334.
[34] Ma M G, Zhu Y J, Chang J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite[J]. Journal of Physical Chemistry B, 2006, 116: 14226-14230.
[35] Wang K W, Zhu Y J, Chen F, et al. Microwave-assisted synthesis of hydroxyapatite hollow microspheres in aqueous solution[J]. Materials Letters, 2011, 65(15/16): 2361-2363.
[36] Zhao X Y, Zhu Y J, Chen F, et al. Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: surfactant-free microwavehydrothermal rapid synthesis, protein/DNA adsorption and pHcontrolled release[J]. CrystEngComm, 2013, 15(1): 206-212.
[37] Chen F, Li C, Zhu Y J, et al. Magnetic nanocomposite of hydroxyapatite ultrathin nanosheets/Fe3O4 nanoparticles: Microwave-assisted rapid synthesis and application in pH-responsive drug release[J]. Biomaterials Science, 2013, 1(10): 1074-1081.
[38] Wang K W, Zhu Y J, Chen X Y, et al. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres: Facile preparation and application in anticancer drug cellular delivery[J]. Chemistry-An Asian Journal, 2010, 5(12): 2477-2482.
[39] Chen F, Huang P, Zhu Y J, et al. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods[J]. Biomaterials, 2011, 32(34): 9031-9039.
[40] Chen F, Tang Q L, Zhu Y J, et al. Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: Electrospun preparation and transformation to hydroxyapatite nanostructures[J]. Acta Biomaterialia, 2010, 6(8): 3013-3020.
[41] Ma Z, Chen F, Zhu Y J, et al. Amorphous calcium phosphate/poly(D, L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization[J]. Journal of Colloid and Interface Science, 2011, 359(2): 371-379.
[42] Qi C, Zhu Y J, Zhao X Y, et al. Highly stable amorphous calcium phosphate porous nanospheres: Microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery[J]. Chemistry-A European Journal, 2013, 19(3): 981-987.
[43] Qi C, Tang Q L, Zhu Y J, et al. Microwave-assisted hydrothermal rapid synthesis of hydroxyapatite nanowires using adenosine 5'-triphosphate disodium salt as phosphorus source[J]. Materials Letters, 2012, 85: 71-73.
[44] Chen F, Huang P, Qi C, et al. Multifunctional biodegradable mesoporous microspheres of Eu3+-doped amorphous calcium phosphate: microwaveassisted preparation, pH-sensitive drug release, and bioimaging application[J]. Journal of Materials Chemistry B, 2014, 2: 7132-7140.
[45] Lu B Q, Zhu Y J, Chen F, et al. Core–shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate synthesis using adenosine 5'-triphosphate and application in pH-responsive drug delivery[J]. Chemistry -An Asian Journal, 2014, 9: 2908-2914.
[46] Zhao J, Zhu Y J, Zheng J Q, et al. Microwave-assisted hydrothermal preparation using adenosine 5'-triphosphate disodium salt as a phosphate source and characterization of zinc-doped amorphous calcium phosphate mesoporous microspheres[J]. Microporous and Mesoporous Materials, 2013, 180: 79-85.
[47] Qi C, Zhu Y J, Chen F. Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 4310-4320.
[48] Qi C, Zhu Y J, Chen F. Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery[J]. Chemistry-An Asian Journal, 2013, 8(1): 88-94.
[49] Qi C, Huang J J, Chen F, et al. Synthesis, characterization and applications of calcium carbonate/fructose 1, 6-bisphosphate composite nanospheres and carbonated hydroxyapatite porous nanospheres[J]. Journal of Materials Chemistry B, 2014, 2: 8378-8389.
[50] Qi C, Zhu Y J, Lu B Q, et al. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwavehydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption[J]. Chemistry-A European Journal, 2013, 19(17): 5332-5341.
[51] Chen F, Zhu Y J, Zhao X Y, et al. Solvothermal synthesis of oriented hydroxyapatite nanorod/nanosheet arrays using creatine phosphate as phosphorus source[J]. CrystEngComm, 2013, 15(22): 4527-4531.
[52] Zhao J, Zhu Y J, Cheng G F, et al. Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate nanoparticles and hydroxyapatite microspheres using cytidine 5'-triphosphate disodium salt as a phosphate source[J]. Materials Letters, 2014, 124: 208-211.
[53] Zhao X Y, Zhu Y J, Lu B Q, et al. Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5'-phosphate as a phosphorus source[J]. Materials Research Bulletin, 2014, 55: 67-70.
[54] Zhao X Y, Zhu Y J, Qi C, et al. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5'-phosphate as a phosphorus source and application in drug delivery[J]. Chemistry -An Asian Journal, 2013, 8(6): 1313-1320.
[55] Zhao X Y, Zhu Y J, Chen F, et al. Hydrothermal synthesis of hydroxyapatite nanorods and nanowires using riboflavin-5'-phosphate monosodium salt as a new phosphorus source and their application in protein adsorption[J]. CrystEngComm, 2013, 15(39): 7926-7935.