专题论文

基于石墨烯的多维度材料构筑及性能研究进展

  • 万武波 ,
  • 赵宗彬 ,
  • 胡超 ,
  • 郗玲冲 ,
  • 邱介山
展开
  • 大连理工大学炭素材料研究室;能源材料化工辽宁省重点实验室;精细化工国家重点实验室, 大连 116024
万武波,博士研究生,研究方向为石墨烯的制备组装及应用,电子信箱:wanwubo@163.com

收稿日期: 2015-01-07

  修回日期: 2015-02-03

  网络出版日期: 2015-03-27

基金资助

国家自然科学基金项目(51072028)

Graphene based multi-dimensional structures and their properties

  • WAN Wubo ,
  • ZHAO Zongbin ,
  • HU Chao ,
  • XI Lingchong ,
  • QIU Jieshan
Expand
  • Carbon Research Laboratory, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

Received date: 2015-01-07

  Revised date: 2015-02-03

  Online published: 2015-03-27

摘要

石墨烯是碳原子以六角形密堆积形成的二维原子晶体,具有独特的物理化学性质,在电子器件、能源环境和生物医学等领域有着广阔的应用前景。石墨烯的可控制备和组装是其实现实际应用的前提条件。近年来,相继开发出一系列石墨烯自组装与结构调控的技术方法,得到了多种结构特异、组成丰富和性能独特的石墨烯基多维度结构。本文从水溶性的氧化石墨烯出发,综述从零维到三维一系列不同维度和尺度石墨烯的自组装行为和材料构筑策略。对石墨烯的不同组装结构进行系统分类,提出其多维度组装体系的概念。石墨烯的多维度组装体系,在微纳米尺度上包括零维度的石墨烯基纳米颗粒和一维的石墨烯纳米线,在宏观尺度上包括二维石墨烯薄膜和三维的宏观体结构,最后对相关研究领域的发展趋势进行了总结和展望,结合计算化学的相关结果,预测了一系列未开发的石墨烯自组装结构。

本文引用格式

万武波 , 赵宗彬 , 胡超 , 郗玲冲 , 邱介山 . 基于石墨烯的多维度材料构筑及性能研究进展[J]. 科技导报, 2015 , 33(5) : 26 -33 . DOI: 10.3981/j.issn.1000-7857.2015.05.003

Abstract

The graphene is a single layer of carbon arranged in a honeycomb (hexagonal) lattice. The unique single layer structure endows this material with a series of extraordinary physicochemical properties, with promising applications in energy, environmental and biomedical sciences. The controllable production and assembly of the graphene is critical for practical applications. This review focuses on the assembly behavior of the graphene based on the colloid chemistry and the interface engineering. The graphene based multi-dimensional assemblies, from the 0D graphene based nanoparticles and the 1D fibers to the macro flexible 2D films and the 3D monoliths, are discussed in this review. The possibility of creating novel graphene assemblies is explored.

参考文献

[1] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.
[2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (6348): 56-58.
[3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[4] Wan W B, Zhao Z B, Fan Y R, et al. Graphene derivatives: Synthesis and applications[J]. Progress in Chemistry, 2011, 23(9): 1883-1891.
[5] Wick P, Louw-Gaume A E, Kucki M, et al. Classification framework for graphene-based materials[J]. Angewandte Chemie International Edition, 2014, 53(30): 7714-7718.
[6] Yadav A, Mishra P C. Polyradicals of polycyclic aromatic hydrocarbons as finite size models of graphene: Highly open-shell nature, symmetry breaking, and enhanced-edge electron density[J]. The Journal of Physical Chemistry A, 2013, 117(36): 8958-8968.
[7] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[8] Wang S, Tang L A, Bao Q, et al. Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets[J]. Journal of the American Chemical Society, 2009, 131 (46): 16832-16837.
[9] Lu J, Yeo P S E, Gan C K, et al. Transforming C60 molecules into graphene quantum dots[J]. Nature Nanotechnology, 2011, 6(4): 247-252.
[10] Castillo-Martinez E, Carretero-Gonzalez J, Sovich J, et al. High temperature structural transformations of few layer graphene nanoribbons obtained by unzipping carbon nanotubes[J]. Journal of Materials Chemistry A, 2014, 2(1): 221-228.
[11] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-876.
[12] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458(7240): 877-880.
[13] Ma X, Zachariah M R, Zangmeister C D. Crumpled nanopaper from graphene oxide[J]. Nano Letters, 2012, 12(1): 486-489.
[14] Luo J, Jang H D, Sun T, et al. Compression and aggregation-resistant particles of crumpled soft sheets[J]. ACS Nano, 2011, 5(11): 8943-8949.
[15] Wang W N, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: Confinement force relationship[J]. Journal of Physical Chemistry Letters, 2012, 3(21): 3228-3233.
[16] Mao S, Wen Z, Kim H, et al. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications[J]. ACS Nano, 2012, 6(8): 7505-7513.
[17] Yang H, Wang Y, Song Y, et al. Assembling of graphene oxide in an isolated dissolving droplet[J]. Soft Matter, 2012, 8: 11249-11254.
[18] Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications, 2012, 3: 650-657.
[19] Hu C, Zhao Y, Cheng H, et al. Graphene microtubings: Controlled fabrication and site-specific functionalization[J]. Nano Letters, 2012, 12(11): 5879-5884.
[20] Xiang C, Behabtu N, Liu Y, et al. Graphene nanoribbons as an advanced precursor for making carbon fiber[J]. ACS Nano, 2013, 7(2): 1628-1637.
[21] Zheng J, Liu H T, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen[J]. Advanced Materials, 2011, 23(21): 2460-2463.
[22] Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls: A promising material for hydrogen storage[J]. Nano Letters, 2007, 7(7): 1893-1897.
[23] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls[J]. Science, 2003, 299(5611): 1361-1361.
[24] Xie X, Ju L, Feng X, et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene[J]. Nano Letters, 2009, 9 (7): 2565-2570.
[25] Chen H, Müller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials, 2008, 20(18): 3557-3561.
[26] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457-460.
[27] Yang X, Zhu J, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors[J]. Advanced Materials, 2011, 23 (25): 2833-2838.
[28] Wan W, Li L, Zhao Z, et al. Ultrafast fabrication of covalently crosslinked multifunctional graphene oxide monoliths[J]. Advanced Functional Materials, 2014, 24(31): 4915-4921.
[29] Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223.
[30] Tang Z, Shen S, Zhuang J, et al. Noble-metal-promoted threedimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie International Edition, 2010, 49(27): 4603-4607.
[31] Chen Y, Guo F, Jachak A, et al. Aerosol synthesis of cargo-filled graphene nanosacks[J]. Nano Letters, 2012, 12(4): 1996-2002.
[32] Zhou G W, Wang J, Gao P, et al. Facile spray drying route for the three-dimensional graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1197-1204.
[33] Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24(3): 347-352.
[34] Yoon S M, Choi W M, Baik H, et al. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles[J]. ACS Nano, 2012, 6(8): 6803-6811.
[35] Wu L, Feng H, Liu M, et al. Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction[J]. Nanoscale, 2013, 5 (22): 10839-10843.
[36] Lee J S, Kim S I, Yoon J C, et al. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor[J]. ACS Nano, 2013, 7(7): 6047-6055.
[37] Bachmatiuk A, Mendes R G, Hirsch C, et al. Few-layer graphene shells and nonmagnetic encapsulates: A versatile and nontoxic carbon nanomaterial[J]. ACS Nano, 2013, 7(12): 10552-10562.
[38] Lee S, Hong J, Koo J H, et al. Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2432-2437.
[39] Guo P, Song H, Chen X. Hollow graphene oxide spheres self-assembled by W/O emulsion[J]. Journal of Materials Chemistry, 2010, 20(23): 4867-4874.
[40] Wan W, Zhao Z, Hughes T C, et al. Graphene oxide liquid crystal pickering emulsions and their assemblies[J]. Carbon, 2015, 85: 16-23.
[41] Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738.
[42] Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection[J]. Small, 2014, 10(23): 4926-4933.
[43] Yan X, Cui X, Li L S. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society, 2010, 132(17): 5944-5945.
[44] Xu Z, Gao C. Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4): 2908-2915.
[45] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011, 2: 571-579.
[46] Xu Z, Gao C. Graphene in macroscopic order: Liquid crystals and wetspun fibers[J]. Accounts of Chemical Research, 2014, 47(4): 1267-1276.
[47] Jalili R, Aboutalebi S H, Esrafilzadeh D, et al. Graphene oxide: Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 43: 5345-5354.
[48] Xu Z, Sun H, Zhao X, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2): 188-193.
[49] Xu Z, Zhang Y, Li P, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. ACS Nano, 2012, 6(8): 7103-7113.
[50] Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24 (14): 1856-1861.
[51] Hu C, Zhao Y, Cheng H, et al. Graphene microtubings: Controlled fabrication and site-specific functionalization[J]. Nano Letters, 2012, 12(11): 5879-5884.
[52] Cheng H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition, 2013, 52(40): 10482-10486.
[53] Taroni A. Motorizing graphene fibres[J]. Nature Materials, 2014, 13(3): 223-223.
[54] Li X, Zhao T, Chen Q, et al. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers[J]. Physical Chemistry Chemical Physics, 2013, 15(41): 17752-17757.
[55] Li X, Sun P, Fan L, et al. Multifunctional graphene woven fabrics[J]. Scientific Reports, 2012, 2: 395-402.
[56] Wang Y, Bian K, Hu C, et al. Flexible and wearable graphene/ polypyrrole fibers towards multifunctional actuator applications[J]. Electrochemistry Communications, 2013, 35: 49-52.
[57] Zhao Y, Song L, Zhang Z, et al. Stimulus-responsive graphene systems towards actuator applications[J]. Energy & Environmental Science, 2013, 6(12): 3520-3536.
[58] Yang Z, Sun H, Chen T, et al. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency[J]. Angewandte Chemie International Edition, 2013, 52(29): 7545-7548.
[59] Chen Q, Meng Y, Hu C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor[J]. Journal of Power Sources, 2014, 247: 32-39.
[60] Hu Y, Cheng H, Zhao F, et al. All-in-one graphene fiber supercapacitor[J]. Nanoscale, 2014, 6(12): 6448-6451.
[61] Patra N, Wang B, Král P. Nanodroplet activated and guided folding of graphene nanostructures[J]. Nano Letters, 2009, 9(11): 3766-3771.
[62] Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen[J]. Advanced Materials, 2011, 23(21): 2460-2463.
[63] Wan W, Zhao Z, Hu H, et al. Folding of graphene into elastic nanobelts[J]. Carbon, 2014, 76: 46-53.
[64] Wan W, Zhao Z, Hu H, et al. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength[J]. Materials Research Bulletin, 2013, 48(11): 4797-4803.
[65] Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444.
[66] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nano, 2008, 3(2): 101-105.
[67] Skákalová V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2005, 109(15): 7174-7181.
[68] Yang X, Qiu L, Cheng C, et al. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films[J]. Angewandte Chemie International Edition, 2011, 50(32): 7325-7328.
[69] Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 341(6145): 534-537.
[70] Chen C, Yang Q H, Yang Y, et al. Self-assembled free-standing graphite oxide membrane[J]. Advanced Materials, 2009, 21(29): 3007-3011.
[71] Lü W, Xia Z, Wu S, et al. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface[J]. Journal of Materials Chemistry, 2011, 21(10): 3359-3364.
[72] Lü W, Li Z, Zhou G, et al. Tailoring microstructure of graphenebased membrane by controlled removal of trapped water inspired by the phase diagram[J]. Advanced Functional Materials, 2014, 24(22): 3456-3463.
[73] Wang D W, Li F, Zhao J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for highperformance flexible electrode[J]. ACS Nano, 2009, 3(7): 1745-1752.
[74] Chen S, Duan J, Jaroniec M, et al. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction[J]. Advanced Materials, 2014, 26(18): 2925-2930.
[75] Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40): 14067-14069.
[76] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
[77] Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano, 2010, 4(12): 7358-7362.
[78] Bai H, Li C, Wang X, et al. On the gelation of graphene oxide[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5545-5551.
[79] Ling Q, Jeffery Z L, Shery L Y C, et al. Biomimetic superelastic graphenebased cellular monoliths[J]. Nature Communications, 2012, 3: 1241-1241.
[80] Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560.
[81] Nanomaterials: Solid carbon, springy and light[J]. Nature, 2013, 494 (7438): 404-404.
[82] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.
[83] Li N, Chen Z, Ren W, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences, 2012, 109(43): 17360-17365.
[84] Ito Y, Tanabe Y, Qiu H J, et al. High-quality three-dimensional nanoporous graphene[J]. Angewandte Chemie International Edition, 2014, 53(19): 4822-4826.
[85] Ito Y, Qiu H J, Fujita T, et al. Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction[J]. Advanced Materials, 2014, 26(24): 4145-4150.
文章导航

/