专题论文

石墨烯在强化传热领域的研究进展

  • 于伟 ,
  • 谢华清 ,
  • 陈立飞 ,
  • 汪明珠 ,
  • 齐玉
展开
  • 上海第二工业大学工学部环境与材料工程学院, 上海 201209
于伟,副教授,研究方向为热功能材料,电子信箱:yuwei@sspu.edu.cn

收稿日期: 2015-01-07

  修回日期: 2015-02-02

  网络出版日期: 2015-03-27

基金资助

国家自然科学基金项目(51106093,51176106,51306109);上海市基础研究重点项目(12JC1404300);上海市第二工业大学优势学科项目(XXKYS1401)

Recent progress of graphene researches in enhanced heat transfer fields

  • YU Wei ,
  • XIE Huaqing ,
  • CHEN Lifei ,
  • WANG Mingzhu ,
  • QI Yu
Expand
  • College of Engineering, School of Environmental and Materials Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China

Received date: 2015-01-07

  Revised date: 2015-02-02

  Online published: 2015-03-27

摘要

石墨烯是一种单原子层厚度的二维平面碳纳米材料,具有超高的载流子迁移率、高热导率等特性。本文综述目前石墨烯在强化传热领域的研究进展,包括石墨烯热导率的测试方法,以及石墨烯在纳米流体、热界面材料、高导热复合高分子材料方面的应用,并对未来石墨烯的研究方向进行展望。

本文引用格式

于伟 , 谢华清 , 陈立飞 , 汪明珠 , 齐玉 . 石墨烯在强化传热领域的研究进展[J]. 科技导报, 2015 , 33(5) : 39 -45 . DOI: 10.3981/j.issn.1000-7857.2015.05.005

Abstract

The graphene is a new type of two-dimensional carbon nanomaterials with a single atomic layer, and it has an ultra high carrier mobility, a high thermal conductivity and other good properties. This paper reviews the current research progress of the graphene in enhanced heat transfer fields, including the measurement method for the thermal conductivity of the graphene, and the applications of the graphene in nanofluids, thermal interface materials, and polymer composites with high thermal conductivity. Some research directions in the future are suggested.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[3] Saito K, Nakamura J, Natori A. Ballistic thermal conductance of a graphene sheet[J]. Physical Review B, 2007, 76(11): 115409.
[4] Ghosh S, Bao W, Subrina S, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7): 555-558.
[5] Chen S, Moore A L, Cai W, et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments[J]. ACS Nano, 2010, 5(1): 321-328.
[6] Lee J U, Yoon D, Kim H, et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy[J]. Physical Review B, 2011, 83(8): 081419.
[7] Cai W, Moore A L, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letters, 2010, 10(5): 1645-1651.
[8] Schwamb T, Burg B R, Schirmer N C, et al. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures[J]. Nanotechnology, 2009, 20(40): 405704.
[9] Xie H, Chen L, Yu W, et al. Temperature dependent thermal conductivity of a free-standing graphene nanoribbon[J]. Applied Physics Letters, 2013, 102(11): 111911.
[10] Yu W, Liu G, Wang J, et al. Significantly reduced anisotropic phonon thermal transport in graphene oxide films[J]. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 2013, 43(9): 1197-1205.
[11] Yu W, Xie H, Li F, et al. Significant thermal conductivity enhancement in graphene oxide papers modified with alkaline earth metal ions[J]. Applied Physics Letters, 2013, 103(14): 141913.
[12] Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticales[J]. ASME-Publications-Fed, 1995, 231: 99-106.
[13] Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous twocomponent systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191.
[14] Yu W, Xie H Q, Bao D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets[J]. Nanotechnology, 2010, 21(5): 055705.
[15] Yu W, Xie H Q, Wang X, et al. Highly efficient method for preparing homogeneous and stable colloids containing graphene oxide[J]. Nanoscale Research Letters, 2011, 6(1): 1-7.
[16] YuW,XieHQ,ChenW.Experimentalinvestigationonthermalconductivity of nanofluids containing graphene oxide nanosheets[J]. Journal of Applied Physics, 2010, 107(9): 094317.
[17] YuW,XieHQ,WangX,etal.Significantthermalconductivityenhancement for nanofluids containing graphene nanosheets[J]. Physics Letters A, 2011, 375(10): 1323-1328.
[18] Park S D, Lee S W, Kang S, et al. Pool boiling CHF enhancement by grapgene-oxide nanofluid under nuclear coolant chemical environments[J]. Nuclear Engineering and Design, 2012, 252: 184-191.
[19] Mehrali M, Sadeghinezhad E, Latibari S T, et al. Investidation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets[J]. Nanoscale Research Letters, 2014, 9(1): 15.
[20] Ghozatloo A, Rashidi A, Shariaty-Niassar M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2014, 53:136-141.
[21] Li X, Chen Y, Mo S, et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid[J]. Thermochimica Acta, 2014, 595: 6-10.
[22] Park S S, Kim N J. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1911-1915.
[23] Lee G, Rhee C K. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation[J]. Journal of Materials Science, 2014, 49(4): 1506-1511.
[24] Mehrali M, Sadeghinezhad E, Latibari S T, et al. Preparation, characterization, viscosity, and thermal conductivity of nitrongen-doped graphene aqueous nanofluids[J]. Journal of Materials Science, 2014, 49 (20): 7156-7171.
[25] Sudeep P M, Taha-Tijerina J, Ajayan P M, et al. Nanofluids based on fluorinated graphene oxide for efficient thermal management[J]. RSC Advances, 2014, 4(47): 24887-24892.
[26] Prasher R. Thermal interface materials: historical perspective, status, and future directions[J]. Proceedings of the IEEE, 2006, 94(8): 1571-1586.
[27] Yu W, Xie H, Chen L. Graphene based silicone thermal greases[J]. Physics Letters A, 2014, 378(3): 207-211.
[28] Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2): 861-867.
[29] Goyal V, Balandin A A. Thermal properties of the hybrid graphenemetelnano-micro-composites:Applicationsinthermalinterface materials[J]. Applied Physics Letters, 2012, 100(7): 073113.
[30] Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials[J]. Solid State Communications, 2012, 152(15): 1311-1340.
[31] Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2011, 49: 793-803.
[32] Yu A P, Ramesh P, Sun X B, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20: 4740-4744.
[33] Im H, Kim J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon, 2012, 50(15): 5429-5440.
[34] Huang X, Zhi C, Jiang P. Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites[J]. Journal of Physics Chemistry C, 2012, 116(44): 23812-23820.
[35] 于伟, 谢华清, 陈立飞, 等. 高导热含石墨烯纳米片尼龙6复合材料[J]. 工程热物理学报, 2013, 34(9): 1749-1751. Yu Wei, Xie Huaqing, Chen Lifei, et al. The high thermal conductivity of graphene nanoplatelets with nylon 6 composites[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1749-1751.
[36] Xie S H, Liu Y Y, Li J Y. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes[J]. Applied Physics Letters, 2008, 92(24): 243121.
[37] Song S H, Park K H, Kim B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent fictionalization[J]. Advanced Materials, 2013, 25(5): 732-737.
[38] Teng C, Ma C, Lu C, et al. Thermal conductivity and structure of noncovalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49 (15): 5107-5116.
[39] YangX,ZhanY,YangJ,etal.Synergeticeffectofcyanogens functionalized carbon nanotube and graphene on the mechanical and thermal properties of poly (arylene ether nitrile) [J]. Journal of Polymer Research, 2011, 19: 9806.
[40] Yu W, Xie H Q, Yin L, et al. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina [J]. International Journal of Thermal Science, 2015, 91: 76-82.
文章导航

/