专题论文

燃煤电厂电除尘PM10和PM2.5的排放控制V:以660 MW机组为例分析讨论高压电源运行优化

  • 马元坤 ,
  • 秦松 ,
  • 陈亮 ,
  • 徐荣田 ,
  • 王仕龙 ,
  • 陈英 ,
  • 韩平 ,
  • 郑钦臻 ,
  • 沈欣军 ,
  • 李树然 ,
  • 闫克平
展开
  • 1. 神华国能宁夏煤电有限公司鸳鸯湖电厂, 银川750001;
    2. 神华国能集团有限公司, 北京100033;
    3. 浙江大学生物质化工教育部重点实验室, 杭州310027
马元坤,高级工程师,研究方向为燃煤电厂运行和管理,电子信箱wangshilong@shenhua.cc

收稿日期: 2014-12-12

  修回日期: 2014-12-30

  网络出版日期: 2015-04-10

基金资助

国家高技术研究发展计划(863计划)项目(2013AA065000);浙江省重点科技创新团队计划项目(2013TD07)

PM10 and PM2.5 emission control by electrostatic precipitator for coalfired power plants V: Optimization of high voltage power source with 660 MW boiler

  • MA Yuankun ,
  • QIN Song ,
  • CHEN Liang ,
  • XU Rongtian ,
  • WANG Shilong ,
  • CHEN Ying ,
  • HAN Ping ,
  • ZHENG Qinzhen ,
  • SHEN Xinjun ,
  • LI Shuran ,
  • YAN Keping
Expand
  • 1. Yuanyang Hu Power Plant, Shenhua Guoneng Energy Group Corporation Limited, Yinchuan 750001, China;
    2. Shenhua Guoneng Energy Group Corporation Limited, Beijing 100033, China;
    3. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China

Received date: 2014-12-12

  Revised date: 2014-12-30

  Online published: 2015-04-10

摘要

本文讨论优化双室四电场电除尘器(ESP)所配套的16 台中荷(ZH)三相高压电源和低压振打系统实现电除尘节能和减排。在16 台传统单相高压电源供电下, 电除尘出口PM10和PM2.5的排放分别为63 mg/m3和23.9 mg/m3, 对应的高压一次电耗为1225 kV·A。采用16 台ZH 三相高压电源改造后, 电除尘出口PM10和PM2.5的排放分别为10~16 mg/m3和2.0~2.5 mg/m3, 对应的高压一次电耗为900~1050 kV·A。在同样高电压电耗下, PM10和PM2.5分别下降了78%和92%。

本文引用格式

马元坤 , 秦松 , 陈亮 , 徐荣田 , 王仕龙 , 陈英 , 韩平 , 郑钦臻 , 沈欣军 , 李树然 , 闫克平 . 燃煤电厂电除尘PM10和PM2.5的排放控制V:以660 MW机组为例分析讨论高压电源运行优化[J]. 科技导报, 2015 , 33(6) : 69 -72 . DOI: 10.3981/j.issn.1000-7857.2015.06.011

Abstract

This paper discusses the optimization of 16 high-voltage power sources for the four-field electrostatic precipitator to achieve energy saving and fly ash emission reduction. With 16 traditional single-phase rectifier-transformers (T/Rs), the PM10 and PM2.5 emissions and the primary power consumption are about 63 mg/m3, 23.9 mg/m3 and 1225 kV·A, respectively. After retrofitting the power sources with 16 ZH type three-phase T/Rs, the PM10 and PM2.5 emissions and the primary power consumption are about 10-16 mg/m3, 2.0-2.5 mg/m3 and 900-1050 kV·A, respectively. For a similar primary energy consumption, emissions for PM10 and PM2.5 are reduced by about 78% and 92%, respectively.

参考文献

[1] 肖创英. 促进燃煤电厂烟尘超低排放[J]. 科技导报, 2014, 32(33): 12. Xiao Chuangying. Technical progress for achieving low particle matter emission from coal-fired power plant[J]. Science & Technology Review, 2014, 32(33): 12.
[2] 王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制I:电 除尘选型及工业应用[J]. 科技导报, 2014, 32(33): 23-33. Wang Shilong, Chen Ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants I: ESP sizing and application[J]. Science & Technology Review, 2014, 32 (33): 23-33.
[3] Li X, Zhang X, Zhu J, et al. Sensitivity analysis on the maximum ash resistivity in terms of its compositions and gaseous water concentration[J]. Journal of Electrostatics, 2012, 70(1): 83-90.
[4] Li S, Li X, Huang Y, et al. Fly ash resistivity: Influencing factors, predicting models and its impacts on electrostatic precipitator performance[M]. New Yorks: NOVA Science Publishers, 2014: 91-144.
[5] 王仕龙. 煤电厂电除尘PM10和PM2.5的排放控制II: 电除尘电源改造与 PM10和PM2.5的排放, 以660 MW机组为例[J]. 科技导报, 2014, 32(33): 34-38. Wang Shilong. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants II: Evaluation of ESP upgrading in terms of PM10 and PM2.5 emission reduction with a 660 MW generator[J]. Science & Technology Review, 2014, 32(33): 34-38.
[6] 王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制III: 电除尘电源及小分区改造与PM10和PM2.5的排放(以4×330 MW机组 为例)[J]. 科技导报, 2014, 32(33): 39-42. Wang Shilong, Chen Ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants III: Application with a 4 × 330 MW power plant[J]. Science & Technology Review, 2014, 32(33): 39-42.
[7] Du C, Yang Y, Wang J, et al. Evaluation of ESP performance via its index value[J]. International Journal of Plasma Environment Science and Technology, 2015 (in Press).
[8] Zhu J, Zhao Q, Yao Y, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70(3): 285-291.
[9] 沈欣军, 郑钦臻, 宁致远, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制 IV: 采用二维PIV除尘[J]. 科技导报, 2014, 32(33): 43-50. Shen Xinjun, Zheng Qinzhen, Ning Zhiyuan, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants IV: Investigation on electrostatic precipitation by means of 2D PIV technique[J]. Science & Technology Review, 2014, 32(33): 43-50.
[10] Noda N, Makino H. Influence of operating temperature on performance of electrostatic precipitator for pulverized coal combustion boiler[J]. Advanced Powder Technology, 2010, 21(4): 495-499.
[11] 南京电力设备质量性能检验中心. NICE/P/2014-TY2014011-HB01, NICE/P/2014-TY2014012-HB01神华国能宁夏煤电有限公司鸳鸯湖 电厂静电除尘改造后性能试验[R]. 南京: 南京电力设备质量性能检 验中心, 2014. Nanjing Inspection Center of Quality Performance for Electric Power Equipment. ESP performance evaluation of Yuanyang Hu Power Plant, No NICE/P/2014-TY2014011-HB01, No NICE/P/2014-TY2014012-HB01[R]. Nanjing: Guodian Science and Technology Research Institute, 2014.
文章导航

/