凝聚核粒子计数器是一种纳米级颗粒物的检测装置, 本文对该仪器的冷凝段进行了理论分析及数值模拟。数值模拟采用四点有限差分隐式法和Crank-Nicolson 法, 使用不等间距网格。结果显示四点有限差分隐式法模拟结果的稳定性和精确性良好, 并与前人的研究结果基本一致。在数值上对剑桥大学提出的高温凝聚核粒子计数器的可行性进行验证, 模拟结果显示, 高温下工作的凝聚核粒子计数器切割粒径为4 nm, 能够去除挥发性物质的影响。研究验证, 由于工质冷凝在颗粒表面而导致的工质损失以致过饱和度降低的影响可忽略不计。
This paper reports the theory and modeling of a nanoparticle monitor, the condensation particle counter. A four-point finite difference implicit approach and Crank-Nicolson approach are utilized for the model and nonuniform grids are adopted. The simulated results have revealed that the four-point finite difference implicit approach is in good agreement with the previous studies, while the stability and precision are improved. This paper numerically validates the feasibility of high temperature condensation particle counter, which was proposed by Cambrige to replace the existing particle measurement program. The result shows that the cut-off size is 4 nm, thus eliminating the effect of volatile compounds. At last, the depletion of working medium is verified, which is caused by working fluid condensing on the particles, thus lowering saturation ratio can be safely neglected.
[1] Kittelson D B. Engines and nanoparticles: A review[J]. Journal of Aerosol Science, 1998, 29(5): 575-588.
[2] Hofmann W. Modelling inhaled particle deposition in the human lung—A review[J]. Journal of Aerosol Science, 2011, 42(10): 693-724.
[3] Ristovski Z D, Miljevic B, Surawski N C, et al. Respiratory health effects of diesel particulate matter[J]. Respirology, 2012, 17(2): 201-212.
[4] European Commission. Public consultation on the future Euro VI emission limits for heavy duty vehicles[EB/OL]. (2007-09-03) [2015-01-23]. http: //ec.europa.eu/enterprise/newsroom/cf/_getdocument.cfm?doc_ id=4378.
[5] Aitken J. On dust, fogs, and clouds[J]. Transactions of the Royal Society of Edinburgh, 1883, 30(1): 337-368.
[6] Espy J P. The philosophy of storms[M]. New York: Little, Brown and Company, 1841.
[7] Coulier M. Note sur une nouvelle propriete de l’air[J]. Journal de Pharmacie et. de Chimie, 1875, 22(4): 165-172.
[8] Rosen J M, Pinnick R G, Hall R. Recent measurements of condensation nuclei in the stratosphere[C]//Proceedings 3rd Conference Climatic Impact Assessment Program. Washington D C: Department of Transportation, 1974: 280-287.
[9] Hering S V, Stolzenburg M R. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow[J]. Aerosol Science and Technology, 2005, 39(5): 428-436.
[10] Kousaka Y, Niida T, Okuyama K, et al. Development of a mixing type condensation nucleus counter[J]. Journal of Aerosol Science, 1982, 13 (3): 231-240.
[11] Iida K, Stolzenburg M R, McMurry P H. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter[J]. Aerosol Science and Technology, 2009, 43(1): 81-96.
[12] Bricard J, Delattre P, Madelaine G, et al. Detection of ultra-fine particles by means of a continuous flux condensation nuclei counter[M]. New York: Academic Press Inc., 1976: 566-580.
[13] Wilson J C, Hyun J H, Blackshear E D. The function and response of an improved stratospheric condensation nucleus counter[J]. Journal of Geophysical Research: Oceans, 1983, 88(C11): 6781-6785.
[14] Agarwal J K, Sem G J. Continuous flow, single-particle-counting condensation nucleus counter[J]. Journal of Aerosol Science, 1980, 11 (4): 343-357.
[15] Cadle R D, Langer G. Stratospheric Aitken particles near the tropopause[J]. Geophysical Research Letters, 1975, 2(8): 329-332.
[16] Hoppel W A, Twomey S, Wojciechowski T A. A segmented thermal diffusion chamber for continuous measurements of CN[J]. Journal of Aerosol Science, 1979, 10(4): 369-373.
[17] BiswasS, VermaV, SchauerJJ, etal.ChemicalspeciationofPM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits[J]. Atmospheric Environment, 2009, 43(11): 1917-1925.
[18] Zheng Z, Johnson K C, Liu Z, et al. Investigation of solid particle number measurement: Existence and nature of sub-23 nm particles under PMP methodology[J]. Journal of Aerosol Science, 2011, 42(12): 883-897.
[19] Collings N, Rongchai K, Symonds J P R. A condensation particle counter insensitive to volatile particles[J]. Journal of Aerosol Science, 2014, 73: 27-38.
[20] Subramanian S R. The Graetz problem[EB/OL]. (2012-04-01) [2015-01-23]. http://www.ewp.rpi.edu/hartford/~ernesto/S2012/EP/Materialsfor Students/Onarheim/Subramanian-Graetz%20Problem.pdf.
[21] Barron R F, Wang X, Warrington R O, et al. Evaluation of the eigenvalues for the Graetz problem in slip-flow[J]. International Communications in Heat and Mass Transfer, 1996, 23(4): 563-574.
[22] Stolzenburg M R. An ultrafine aerosol size distribution measuring system[D]. Twin Cities: University of Minnesota, 1988.
[23] Stolzenburg M R, McMurry P H. An ultrafine aerosol condensation nucleus counter[J]. Aerosol Science and Technology, 1991, 14(1): 48-65.
[24] Ahn K H, Liu B Y H. Particle activation and droplet growth processes in condensation nucleus counter—I. Theoretical background[J]. Journal of Aerosol Science, 1990, 21(2): 249-261.
[25] Ahn K H, Liu B Y H. Particle activation and droplet growth processes in condensation nucleus counter—II. Experimental study[J]. Journal of Aerosol Science, 1990, 21(2): 263-275.
[26] Patankar S. Numerical heat transfer and fluid flow[M]. Boca Raton: CRC Press, 1980.
[27] Kanchit Rongchai. The high temperature condensation particle counter (HT-CPC)—A new instrument for the measurement of solid particulate matter[D]. Cambridge: University of Cambridge, 2013.
[28] Hinds W C. Aerosol technology: Properties, behavior, and measurement of airborne particles[M]. New York: Wiley Interscience, 1982.
[29] White F M, Corfield I. Viscous fluid flow[M]. New York: McGraw-Hill, 1991.
[30] Rohsenow W M, Hartnett J P, Cho Y I. Handbook of heat transfer[M]. New York: McGraw-Hill, 1997.
[31] Fuchs N A, Sutugin A G. Highly dispersed aerosols[M]. Ann Arbor, Michigan: Ann Arbor Science Publishers, 1970.