专题论文

新型在线光谱测量方法在环境排放中的应用

  • 杨荟楠 ,
  • 王琴 ,
  • 杨正鹏 ,
  • 陈军 ,
  • 蔡小舒
展开
  • 1. 上海理工大学能源与动力工程学院, 颗粒及两相流测量研究所, 上海200093;
    2. 上海市多相流及传热传质重点实验室, 上海200093
杨荟楠,博士,研究方向为激光光谱测量方法,电子信箱yanghuinan@usst.edu.cn;陈军,博士,研究方向为环境及排放在线监测,电子信箱j.chen@usst.edu.cn

收稿日期: 2015-02-09

  修回日期: 2015-02-28

  网络出版日期: 2015-04-10

基金资助

国家自然科学基金项目(51306123, 41375124);2013年高等学校博士点基金联合资助课题新教师类(20133120120008)

Novel in-situ spectroscopy methods for ambient emission studies

  • YANG Huinan ,
  • WANG Qin ,
  • YANG Zhengpeng ,
  • CHEN Jun ,
  • CAI Xiaoshu
Expand
  • 1. Institute of Particle and Two-phase Flow Measurement; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China

Received date: 2015-02-09

  Revised date: 2015-02-28

  Online published: 2015-04-10

摘要

新型在线光谱测量方法, 如宽带腔增强吸收光谱及可调谐半导体激光吸收光谱技术, 由于其高灵敏度、原位实时以及较好的时间空间分辨率, 被广泛应用于环境排放监测。本文结合实际测量案例, 对腔增强吸收光谱技术在气态亚硝酸、气溶胶消光及可调谐激光在选择性催化还原脱硝中的液膜多参数测量中的应用研究做了总结回顾, 并认为两种测量技术的发展结合, 将为大气化学反应的核心活性物种测量、气溶胶消光参数的准确定量及非均相大气反应动力学测量提供有效的方法。

本文引用格式

杨荟楠 , 王琴 , 杨正鹏 , 陈军 , 蔡小舒 . 新型在线光谱测量方法在环境排放中的应用[J]. 科技导报, 2015 , 33(6) : 79 -85 . DOI: 10.3981/j.issn.1000-7857.2015.06.013

Abstract

Novel in-situ spectroscopy methods such as incoherent broad band cavity enhanced absorption spectroscopy (IBBCEAS) and tunable diode laser absorption spectroscopy (TDLAS) have been widely used for ambient emission studies due to their high sensitivity, real time, in-situ and high temporal and spatial resolutions. This work illustrates three real measurements of nitrous acid radical formation, aerosol extinction and multi-parameters of ammonia liquid film. It is conclusively shown that to develop and combine both methods will boost measurement of both atmospheric radical and aerosol extinction, as well as the studies of heterogeneous dynamical chemistry.

参考文献

[1] 曹军骥. PM2.5与环境[M]. 北京: 科学出版社, 2014: 1-2. Cao Junji. PM2.5 and environment[M]. Beijing: Science Press, 2014: 1-2.
[2] Fu T M, Jacob D J, Wittrock F, et al. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D15.
[3] Richter A, Burrows J P, Nüß H, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437(7055): 129-132.
[4] Shao M, Tang X, Zhang Y, et al. City clusters in China: Air and surface water pollution[J]. Frontiers in Ecology and the Environment, 2006, 4(7): 353-361.
[5] Thompson J E, Spangler H D. Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient[J]. Applied Optics, 2006, 45(11): 2465-2473.
[6] Vrekoussis M, Wittrock F, Richter A, et al. Temporal and spatial variability of glyoxal as observed from space[J]. Atmospheric Chemistry and Physics, 2009, 9(13): 4485-4504.
[7] Zhang Y H, Hu M, Zhong L J, et al. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview[J]. Atmospheric Environment, 2008, 42(25): 6157-6173.
[8] Zhu T, Shang J, Zhao D F. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze[J]. Science China Chemistry, 2011, 54(1): 145-153.
[9] Cao J, Xu H, Xu Q, et al. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted chinese city[J]. Environmental Health Perspectives, 2012, 120(3): 373-378.
[10] Brown S S. Absorption spectroscopy in high-finesse cavities for atmospheric studies[J]. Chemical Reviews, 2003, 103(12): 5219-5238.
[11] Ball S M, Jones R L. Broad-band cavity ring-down spectroscopy[J]. Chemical Reviews, 2003, 103(12): 5239-5262.
[12] Engeln R, Berden G, Peeters R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Review of Scientific Instruments, 1998, 69(11): 3763-3769.
[13] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371(3): 284-294.
[14] Ball S M, Langridge J M, Jones R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chemical Physics Letters, 2004, 398(1): 68-74.
[15] Langridge J M, Ball S M, Jones R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. Analyst, 2006, 131(8): 916-922.
[16] Venables D S, Gherman T, Orphal J, et al. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy[J]. Environmental Science & Technology, 2006, 40(21): 6758-6763.
[17] Ruth A A, Orphal J, Fiedler S E. Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source[J]. Applied Optics, 2007, 46(17): 3611-3616.
[18] Orphal J, Ruth A A. High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broadband light source[J]. Optics Express, 2008, 16(23): 19232-19243.
[19] Langridge J M, Ball S M, Shillings A J L, et al. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection[J]. Review of Scientific Instruments, 2008, 79(12): 123110.
[20] Gherman T, Venables D S, Vaughan S, et al. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: Application to HONO and NO3[J]. Environmental Science & Technology, 2008, 42(3): 890-895.
[21] Vaughan S, Gherman T, Ruth A A, et al. Incoherent broad-band cavityenhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO[J]. Physical Chemistry Chemical Physics, 2008, 10(30): 4471-4477.
[22] Washenfelder R A, Langford A O, Fuchs H, et al. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption 7793.
[23] Varma R M, Venables D S, Ruth A A, et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction[J]. Applied Optics, 2009, 48(4): B159-B171.
[24] Wu T, Zhao W, Chen W, et al. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode[J]. Applied Physics B, 2009, 94(1): 85-94.
[25] Dixneuf S, Ruth A A, Vaughan S, et al. The time dependence of molecular iodine emission from Laminaria digitata[J]. Atmospheric Chemistry and Physics, 2009, 9(3): 823-829.
[26] Meinen J, Thieser J, Platt U, et al. Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS[J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3901-3914.
[27] Ball S M, Hollingsworth A M, Humbles J, et al. Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed[J]. Atmospheric Chemistry and Physics, 2010, 10(13): 6237-6254.
[28] Thalman R, Volkamer R. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode[J]. Atmospheric Measurement Techniques, 2010, 3(6): 1797-1814.
[29] Benton A K, Langridge J M, Ball S M, et al. Night-time chemistry above London: Measurements of NO3 and N2O5 from the BT Tower[J]. Atmospheric Chemistry and Physics, 2010, 10(20): 9781-9795.
[30] Wu T, Chen W, Fertein E, et al. Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air[J]. Applied Physics B, 2012, 106(2): 501-509.
[31] 董美丽, 赵卫雄, 顾学军, 等. 宽带腔增强吸收光谱技术应用于NO2高 灵敏度探测及气溶胶消光系数测量研究[C]//S18大气物理学与大气 环境. 北京: 中国气象学会, 2012: 1-5. Dong meili, Zhao weixiong, Gu xuejun, et al. Broadband cavity enhanced absorption spectroscopy is applied to NO2 high sensitivity detection and aerosol extinction coefficient measurement research[C]//S18 atmospheric physics and atmospheric environment. Beijing: China Meteorological Society, 2012: 1-5
[32] Johansson O, Mutelle H, Parker A E, et al. Quantitative IBBCEAS measurements of I2 in the presence of aerosols[J]. Applied Physics B, 2014, 114(3): 421-432.
[33] Washenfelder R A, Flores J M, Brock C A, et al. Broadband measurements of aerosol extinction in the ultraviolet spectral region[J]. Atmospheric Measurement Techniques, 2013, 6(4): 861-877.
[34] Arroyo M P, Hanson R K. Absorption measurements of water-vapor concentration, temperature and line-shape parameters using a tunable InGaAsP diode laser[J]. Applied Optics, 1993, 32(30), 6104-6116.
[35] Webber M E, Baer D S, Hanson R K. Ammonia monitoring near 1.5 μm with diode-laser absorption sensors[J]. Applied Optics, 2001, 40(12): 2031-2042.
[36] 张春晓, 王飞, 李宁, 等. 可调谐半导体激光吸收光谱技术光信号相 关法氨气浓度流速同时测量[J]. 光谱学与光谱分析, 2009, 29(10): 2597-2601. Zhang Chunxiao, Wang Fei, Li Ning, et al. Ammonia gas concentration and velocity measurement using tunable diode laser absorption spectroscopy and optical signal cross-correlation method[J].Spectroscopy and Spectral Analysis, 2009, 29(10): 2597-2601.
[37] Seidel A, Wagner S, Ebert V. TDLAS-based open-path laser hygrometer using simple reflective foils as scattering targets[J]. Applied Physics B, 2012, 109(3): 497-504.
[38] 王超, 王飞, 邢大伟, 等. 利用可调谐半导体激光吸收光谱技术对燃 烧环境中的CO在线测量[J]. 燃烧科学与技术, 2014, 20(2): 176-180. Wang Chao, Wang Fei, Xing Dawei, et al. In situ measurements of CO concentration in combustion environment based on tunable diode laser absorption spectroscopy[J]. Journal of Combustion Science and Technology, 2014, 20(2): 176-180.
[39] Pogány A, Ott O, Werhahn O, et al. Towards traceability in CO2 line strength measurements by TDLAS at 2.7 μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 147-157.
[40] Wagner S, Fisher B T, Fleming J W, et al. TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 839-846.
[41] Ray A, Bandyopadhyay A, Sanjar D. A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm[J]. Optics and Laser Technology, 2007, 39 (2):359~367.
[42] 王飞, 黄群星, 李宁, 等. 利用可调谐半导体激光光谱技术对含尘气 体中NH3的测量[J]. 物理学报, 2007, 56(7): 3867-3872. Wang Fei, Huang Qunxing, Li Ning, et al. The tunable diode laser absorption spectroscopy for measurement of NH3 with particles[J]. Acta Physica Sinica, 2007, 56(7): 3867-3872.
[43] Namjou K, Roller C B, Keich T E. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy[J]. Lasers and Optics, 2006, 85(2-3): 427-435.
[44] 阚瑞峰, 刘文清, 张玉钧, 等. 可调谐二极管激光吸收光谱法测量环 境空气中的甲烷含量[J]. 物理学报, 2005, 54(4): 1927-1930. Kan Ruifeng, Liu Wenqing, Zhang Yujun, et al. Absorption measurements of ambient methane with tunable diode lase[J]. Acta Physica Sinica, 2005, 54(4): 1927-1930.
[45] Schlosser H E, Wolfrum J, Ebert V, et al. In situ determination of molecular oxygen concentrations in full-scale fire-suppression tests using tunable diode laser absorption spectroscopy[J]. Proceedings of the Combustion Institute, 2002, 29(1): 353-360.
[46] Kleffmann J, Becker K H, Wiesen P. Heterogeneous NO2 conversion processes on acid surfaces: Possible atmospheric implications[J]. Atmospheric Environment, 1998, 32(16): 2721-2729.
[47] Myhre G, Stordal F, Berglen T F, et al. Uncertainties in the radiative forcing due to sulfate aerosols[J]. Journal of the Atmospheric Sciences, 2004, 61(5): 485-498.
[48] 蔡小舒, 周骛, 杨荟楠, 等. 燃烧与流场在线测量诊断方法研究进展[J]. 实验流体力学, 2014, 28(1): 12-20. Cai Xiaoshu, Zhou Wu, Yang Huinan, et al. Research advances in the in-line measurement techniques for combustion and flow field[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1): 12-20
[49] 杨荟楠, 郭晓龙, 苏明旭, 等. 基于TDLAS技术在线测量气流道内液 膜动态厚度[J]. 中国激光, 2014, 41(12): 1208010-1-1208010-6. Yang Huinan, Guo Xiaolong, Su Mingxu, et al. Liquid-water filmthickness online measurement in a flow channel by TDLAS[J]. Chinese Journal of Lasers, 2014, 41(12): 1208010-1-1208010-6.
文章导航

/