研究论文

往复荷载下配置高强钢筋桥墩滞回性能试验

  • 张健新 ,
  • 戎贤 ,
  • 刘平
展开
  • 河北省工业大学土木工程学院, 天津300401
张健新,博士研究生,研究方向为结构抗震,电子信箱zhangjianxin505@126.com

收稿日期: 2014-09-27

  修回日期: 2014-12-23

  网络出版日期: 2015-04-10

基金资助

天津市自然科学基金项目(12JCYBJC14100);河北省交通运输厅科技计划项目(Y-2012041, Y-2011052)

Experimental research of hysteretic behavior of high strength reinforced concrete bridge piers under cycle loading

  • ZHANG Jianxin ,
  • RONG Xian ,
  • LIU Ping
Expand
  • School of Civil Engineering, Hebei University of Technology, Tianjin 300401, China

Received date: 2014-09-27

  Revised date: 2014-12-23

  Online published: 2015-04-10

摘要

为研究配置HRB500 高强钢筋的混凝土桥墩的滞回性能, 进行了4 个混凝土桥墩试件的低周往复加载试验, 分析剪跨比、纵筋强度和箍筋强度对混凝土桥墩受力破坏形态的影响, 对比配置高强钢筋桥墩与普通钢筋桥墩, 两者滞回性能的异同。结果表明, 随着箍筋的有效约束下桥墩试件剪跨比的增加, 试件的变形能力增加, 滞回曲线更饱满, 刚度退化减缓。配置高强纵筋及高强箍筋桥墩试件的刚度退化、滞回曲线等滞回特性均优于配置普通钢筋桥墩试件, 同时提高了试件的承载能力及变形能力。

本文引用格式

张健新 , 戎贤 , 刘平 . 往复荷载下配置高强钢筋桥墩滞回性能试验[J]. 科技导报, 2015 , 33(6) : 97 -100 . DOI: 10.3981/j.issn.1000-7857.2015.06.016

Abstract

Four concrete bridge piers are tested under a low cycle loading to study the hysteretic behavior of HRB500 high strength reinforced concrete bridge piers. The effects of the shear span ratio, the longitudinal reinforcement and the stirrup strength grade on concrete bridge pier's failure modes are analyzed. The comparison of the hysteretic behavior between the high strength reinforced concrete bridge piers and the ordinarily reinforced concrete bridge piers shows that with the increase of the shear span ratio and the effective constraint of the stirrup, the deformability is increased, the hysteretic curve becomes fuller and the rigidity degeneration slows down. The hysteretic behavior of the concrete bridge piers with a high strength longitudinal reinforcement and a high strength stirrup, such as the rigidity degeneration and the hysteretic curve, is improved as compared to the ordinarily reinforced concrete bridge piers. The bearing capacity and the deformability of the HRB500 high strength reinforced concrete bridge piers are enhanced.

参考文献

[1] 孙治国, 王东升, 郭迅, 等. 汶川大地震绵竹市回澜立交桥震害调查[J]. 地震工程与工程振动, 2009, 29(4): 132-138. Sun Zhiguo, Wang Dongsheng, Guo Xun, et al. Damage investigation of Huilan interchange in Mianzhu after Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 29(4): 132-138.
[2] Chang K C, Chang D W, Tsai M H, et al. Seismic performance of highway bridges[J]. Earthquake Engineering and Engineering Seismology, 2000, 2(1): 85-105.
[3] Hashimoto S, Fujino Y, Abe M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. II: damage mode of single reinforced concrete piers[J]. Journal of Bridge Engineering, 2005, 10(1):54-60.
[4] Mitchell D, Bruneau M, Williams M, et al. Performance of bridges in the 1994 Northridge earthquake[J]. Canadian Journal of Civil Engineering, 1995, 22(2): 415-427.
[5] 王吉忠, 王苏岩, 黄承逵. CFRP加固高强混凝土柱抗震性能和延性研 究[J]. 大连理工大学学报, 2008, 48(5): 708-714. Wang Jizhong, Wang Suyan, Huang Chengkui. Research on ductility and earthquake-resistance of high-strength concrete column confined by CFRP[J]. Journal of Dalian University of Technology, 2008, 48(5): 708-714.
[6] 刘钧, 侯杰, 邱法维. 钢筋棍凝土独柱式桥墩的拟动力试验研究[J]. 工程抗震与加固改造, 2006, 28(5): 43-48. Liu Jun, Hou Jie, Qiu Fawei. Pseudo dynamic test research of reinforced concrete bridge column pier[J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(5): 43-48.
[7] 司炳君, 孙治国, 王东升, 等. 利用ANSYS模拟桥墩滞回性能的建模 方法[J]. 武汉理工大学学报, 2007 29(6): 76-79. Si Bingjun, Sun Zhiguo, Wang Dongheng, et al. Modeling methods on simulation of hysteretic behavior of bridge piers based on ANSYS software[J]. Journal of Wuhan University of Technology, 2007, 29(6): 76-79.
[8] 中国公交规划设计院. JTG D62—2004公路钢筋混凝土及预应力混凝 土桥涵设计规范混凝土结构设计规范[S]. 北京: 人民交通出版社, 2004. China Communications Planning and Design Institute. JTG D62—2004 Code for design of highway reinforced concrete and prestressed concrete bridges and culverts[S]. Beijing: China Communications Press, 2004.
文章导航

/