根据SMA 阻尼器的工作原理和输电塔的振动特性,提出应用SMA 阻尼器对输电塔风致振动进行控制。应用有限元软件建立输电塔和阻尼器的有限元模型,基于Matlab 软件,采用线性自回归滤波器法模拟随机脉动风荷载的时程样本;应用能量法计算所需阻尼器数量,根据阻尼器的工作原理和输电塔结构特点设计不同的阻尼器布置方案;对不同方案进行结构风致振动瞬态响应仿真,提取各方案控制点位移和加速度时间历程进行比较分析。模拟了多种风荷载,进一步对各方案的控制效果进行了对比分析。结果表明:SMA 阻尼器对输电塔风振控制效果较好;将阻尼器布置在塔头上,可有效控制塔顶位移,减振率在28%以上;在塔身上布置阻尼器,可有效控制塔顶加速度,减振率在66%以上。通过综合比较,选出了阻尼器的最佳布置方案。
To reduce wind-induced vibration of power transmission tower, several wind-induced vibration reduction schemes with different SAM damper layouts are designed and compared. Firstly, the finite element models of dump-type transmission tower and SMA damper are built with ANSYS software, the wind load is simulated with Matlab software, and the time history samples of random fluctuating wind load are obtained using the linear auto-regressive filter law. Then, six layouts are proposed based on the working principle of damper and the structure of the tower. Finally, wind-induced vibration transient response simulation is performed for each different scheme. The responses of SMA dampers on the displacement and the acceleration of the controlled nodes are compared with each other. The results indicate that the SMA damper can suppress wind-induced vibration, and that different layouts have different control effects. Installing dampers at the tower head can reduce the top node displacement by more than 28% while installing dampers on the tower can reduce the top node acceleration by more than 66%. Through comparison and analysis, the optimal scheme is obtained.
[1] Housner G W, Bergman L A, Caughey T K. Structural control: Past, present, and futur[J]. Journal of Engineering Mechanics, 1997, 123(9): 897-958.
[2] Albert Richardson S. Performance requirements for vibration dampers[J]. Electric Power System Research, 1996, 36: 21-28.
[3] 陈晓明, 邓洪洲, 王肇民. 大跨越输电线路舞动稳定性的研究[J]. 工程力学, 2004, 21(l): 56-62. Chen Xiaoming, Deng Hongzhou, Wang Zhaomin. Conductor galloping stability analysis of long- span transmission system[J]. Engineering Mechanics, 2004, 21(l): 56-62.
[4] Battista R C, Rodrigues R S, Pfeil M S. Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(8): 1051 -1067.
[5] 郭勇, 孙炳楠, 叶尹, 等. 大跨越输电塔线体系风振响应频域分析及风振控制[J]. 空气动力学报, 2009, 27(3): 288-295. Guo Yong, Sun Bingnan, Ye Yi, et al. Frequency-domain analysis on wind- induced dynamic response and vibration control of long span transmission line system[J]. Acta Aerodynamica Sinica, 2009, 27(3): 288-295.
[6] 鄢圣超, 闫维明, 何浩祥, 等. 双钢管塔顺风向风振反应的TMD控制研究[J]. 工程结构, 2006, 26(2): 109-113. Yan Shengchao, Yan Weiming, He Haoxiang, et al. Research on TMD control of double steel pipe tower of along wind responses[J]. Engineering Structure, 2006, 26(2): 109-113.
[7] 杨靖波, 韩军科, 华旭刚, 等. 1000 kV淮南—上海输变电工程同塔双回钢管塔风振控制[J]. 中国电机工程学报, 2010, 30(7): 104-105. Yang Jingbo, Han Junke, Hua Xugang, et al. Wind-induced vibration suppression of tubular towers for 1000 kV double-circuit transmission lines on the same tower from Huainan to Shanghai[J]. Proceedings of the CSEE, 2010, 30(7): 104-105.
[8] 李爱群, 高振世. 工程结构抗震与防灾[M]. 南京: 东南大学出版社, 2003. Li Aiqun, Gao Zhenshi. Seismic and disaster prevention of engineering structure[M]. Nanjing: Southeast University Press, 2003.
[9] 吴昀泽. 形状记忆合金的力学性能与本构模型研究[D]. 广州: 华南理工大学, 2012. Wu Junze. Study on mechanical properties and constitutive model of shape memory alloy[D]. Guangzhou: South China University of Technology, 2012.
[10] 杨慧, 陈国平, 罗晓惠, 等. 基于形状记忆合金阻尼器的混凝土框架结构减振分析[J]. 四川建筑科学研究, 2010, 36(4): 158-161. Yang Hui, Chen Guoping, Luo Xiaohui, et al. Dissipation of frame construction with shape memory alloy[J]. Sichuan Building Science, 2010, 36(4): 158-161.
[11] 李宏男, 钱辉, 宋刚兵, 等. 一种新型SMA阻尼器的试验和数值模拟研究[J]. 振动工程学报, 2008, 21(2): 179-184. Li Hongnan, Qian Hui, Song Gangbing, et al. A type of shape memory alloy damper: Design, experiment and numerical simulation[J]. Journal of Vibration Engineering, 2008, 21(2): 179-184.
[12] 周云, 陈小兵, 汪大洋. 基于能量的结构风振控制设计方法研究[J]. 振动与冲击, 2012, 31(8): 24-28. Zhou Yun, Chen Xiaobing, Wang Dayang. Energy- based design method for wind-induced vibration control[J]. Journal of Vibration and Shock, 2012, 31(8): 24-28.