[1] Cheetham A K, Férey G, Loiseau T. Open-framework inorganic materials[J]. Angewandte Chemie International Edition, 1999, 38(22): 3268-3292.
[2] de St Claire-Deville H. Reproduction de la levyne[J]. Comptes Rendus, 1862, 54(1862): 324-327.
[3] Bonavia G, Debord J, Haushalter R C. Hydrothermal synthesis and characterization of two-and three-dimensional solids of the oxovanadium (IV)-phosphite system. The structures of [HN(Me) (CH2CH2)2 N(Me)H][(VO)4(OH)2(HPO3)4], [H2N(CH2CH2)2NH2] [(VO)3(HPO3)4(H2O)2], and [VO (HPO3)(H2O)][J]. Chemistry of Materials, 1995, 7(11): 1995-1998.
[4] Poojary D M, Zhang Y P, Clearfield A. Synthesis and crystal structures of aluminum and iron phosphites[J]. Journal of Chemical Crystallography, 1994, 24(2): 155-163.
[5] Li N, Xiang S H. Hydrothermal synthesis and crystal structure of two novel alumino -phosphites containing infinite Al—O—Al chains[J]. Journal of Material Chemistry, 2002, 12(5): 1397-1400.
[6] Harvey H G, Hu J, Attfield M P. Synthesis, structural characterization, and readsorption behavior of a solid solution aluminum phosphite/ ethylenediphosphonate series[J]. Chemistry of Materials, 2003, 15(1): 179-188.
[7] Xiang Y, Zhang L W, Zeng Q X. Synthesis and characterization of a new organically templated aluminophosphite with a chainlike structure[J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 2007, 633 (10): 1727-1730.
[8] Yang Y, Zhao Y N, Yu J G. Two neutral open-framework metal phosphites with ten-ring channels constructed by three-, four-, and five-connected centers[J]. Chemistry Letters, 2008, 37(7): 678-679.
[9] Li X, Luo D B, Lin Z E. Solvothermal synthesis of new open-framework metal phosphites with structure-directing agents generated in situ[J]. Solid State Sciences, 2013, 19: 80-84.
[10] Wang L, Song T Y, Shi S H. Ga3(HPO3)4F4(H3DETA) (DETA = diethylenetriamine): A new open-framework fluorinated gallium phosphite with pentameric building unit[J]. Journal of Solid State Chemistry, 2006, 179(3): 824-829.
[11] Wang L, Song T Y, Shi S H. Synthesis and characterization of a new open-framework fluorinated gallium phosphite with three-dimensional intersecting channels[J]. Journal of Solid State Chemistry, 2006, 179 (11): 3400-3405.
[12] Zhou G P, Yang Y L, Fan R Q. The first organically templated gallium phosphite-oxalates: Synthesis, structures, and characterizationseer[J]. Solid State Sciences, 2010, 12(5): 873-881.
[13] Huang L L, Fan Y, Wang L. Synthesis and characterizations of two NbO topological gallium phosphites with low framework density[J]. Microporous and Mesoporous Materials, 2014, 196(15): 321-326.
[14] Jhang P C, Yang Y C, Wang S L. A fully integrated nanotubular yellow-green phosphor from an environmentally friendly eutectic solvent[J]. Angewandte Chemie International Edition, 2009, 48(4): 742-745.
[15] Yi Z, Chen C, Pang W Q. Hydrothermal synthesis and structural characterization of the first indium phosphite In2(HPO3)3(H2O) [J]. Inorganic Chemistry Communications, 2005, 8(2): 166-169.
[16] Wang L, Song T Y, Shi S H. Synthesis and characterization of two new organically templated indium phosphites built from one-dimensional ladders[J]. Microporous and Mesoporous Materials, 2006, 96(1-3): 287-292.
[17] 刘成站. In(HPO3)·(NH3CH2CH2NH3)·(H2O)的水热合成与晶体结构[J]. 高等学校化学学报, 2007, 28(9): 1637-1639. Liu Chengzhan. Hydrothermal synthesis and characterization of a new indium phosphite In(HPO3) · (NH3CH2CH2NH3) · (H2O) with intersecting twelve-membered ring channels[J]. Chemical Journal of Chinese Universities, 2007, 28(9): 1637-1639.
[18] Ramaswamy P, Natarajan S, Hegde N N. Synthesis, structure and transformation studies in a family of inorganic-organic hybrid framework structures based on indium[J]. Inorganic Chemistry, 2009, 48(24): 11697-11711.
[19] Li H D, Zhang L R, Liu Y L. Organic template-directed indium phosphite-oxalate hybrid material: synthesis and characterization of a novel 3D |C6H14N2|[In2(HPO3)3(C2O4)] compound with intersecting channels[J]. Inorganic Chemistry Communications, 2009, 12(10): 1020-1023.
[20] Huang L L, Song T Y, Wang L. Hydrothermal syntheses, characterizations of novel three-dimensional indium phosphite and indium phosphite-phosphate with intersecting 8-membered ring channels: [In3(H2PO3)3 (HPO3)4] · (trans-C6N2H16) and [In6(HPO3)8(H2PO3)5(H2PO4)] · (C3N2H12)2[J]. Microporous and Mesoporous Materials, 2010, 132(3): 409-413.
[21] Wang L, Shi S H, Song T Y. (H3NC2H4NH3)[In(OH)3(HPO3)]: The first organically templated indium phosphite[J]. Inorganic Chemistry Communications, 2005, 8(3): 271-273.
[22] Huang L L, Song T Y, Wang L. Synthesis and characterization of a new chiral open-framework indium phosphite with intertwined host and guest helices[J]. Microporous and Mesoporous Materials, 2012, 149(1): 95-100.
[23] Li H D, Liu Y L, Zhang L R. Construction of two novel indium phosphites with (3,6)-and (3,5)-connected frameworks: Synthesis, structure and characterization[J]. Journal of Solid State Chemistry, 2013, 197: 75-80.
[24] Wang X L, Li J Y, Yan Y. Solvothermal syntheses and structures of four indium-phosphite coordination polymers[J]. Cryst Eng Comm, 2014, 16(11): 2266-2272.
[25] Fu W S, Feng S H, Wang L. The first organically templated beryllium phosphite [NH3(CH2)3NH3]·Be3(HPO3)4: Hydrothermal synthesis and X-ray crystal structure[J]. Crystal Growth & Design, 2004, 4(2): 297-300.
[26] Luo X C, Lin Z E, Luo D B. (C2H8N)2[Be3(HPO3)4]: A low-density beryllium phosphite with large 16-membered rings and helical channels[J]. CrystEngComm, 2011, 13(11): 3646-3648.
[27] Liang J, Yu J H, Xu R R. Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains[J]. Chemical Communications, 2003(7): 882-883.
[28] Chung U C, Mesa J L, Pizarro J L. Structural, thermal, spectroscopic, specific-heat, andmagnetic studies of (C5H18N3)[Fe3(HPO3)6]·3H2O: A new organically templated iron(III) phosphite with a pillared structure formed by the interpenetration of two subnets[J]. Inorganic Chemistry, 2006, 45(22): 8965-8972.
[29] Ramaswamy P, Natarajan S, Mandal S. Synthesis, structure, and magnetic properties of amine-templated transition-metal phosphites[J]. European Journal of Inorganic Chemistry, 2010, 2010(12): 1829-1838.
[30] Zhao L, Yu J H, Li J Y. 2H3O·[Co8(HPO3)9(CH3OH)3]·2H2O: An open-framework cobalt phosphite containing extra-large 18-ring channels[J]. Chemistry of Materias, 2008, 20(1): 17-19.
[31] Xing H Z, Nakano Takehito, Yu J H. Ionothermal synthesis of extralarge-pore open-framework nickel phosphite 5H3O·[Ni8(HPO3)9Cl3]· 1.5H2O: Magnetic anisotropy of the antiferromagnetism[J]. Angewandte Chemie International Edition, 2010, 49(13): 2328-2331.
[32] Wang Y, Yu J H, Xu R R. Hydrothermal synthesis and characterization of a new inorganic-organic hybrid layered zinc phosphate-phosphite[J]. Journal of the Chemical Society, Dalton Transactions, 2002, 21: 4060-4063.
[33] Gordon L E, Harrison W T A. Amino acid templating of inorganic networks: Synthesis and structure of l-asparagine zinc phosphite, C4N2O3H8·ZnHPO3[J]. Inorganic Chemistry, 2004, 43(6): 1808-1809.
[34] Liang J, Li J Y, Yu J H. [(C4H12N)2][Zn3(HPO3)4]: An open-framework zinc phosphite containing extra-large 24-ring channels[J]. Angewandte Chemie International Edition, 2006, 45(16): 2546-2548.
[35] Song D S, Su D P, Fu Z Y. Synthesis, characterization, and catalytic behavior of two open-framework zinc phosphites with 2D and 3D structures[J]. Inorganic Chemistry Communications, 2011,14(1): 150-154.
[36] Orive J, Larrea E S, Arriortua M L. Amine templated open-framework vanadium(III) phosphites with catalytic properties[J]. Dalton Transactions, 2013, 42: 4500-4512.
[37] Ensling J, Gütlich P, Kniep R. Ferric phosphite: Dimers of face sharing FeIIIO6 octahedra. crystal structure redetermination, mossbauer spectra, magnetic susceptibility, and heat capacity data[J]. Inorganic Chemistry, 1994, 33(16): 3595-3597.
[38] Fernández-Armas S, Mesa J L, Prof T R. (C4N2H12)[Fe0.86IIFe1.14III(HPO3) 1.39(HPO4)0.47(PO4)0.14F3]: A fluoro-phosphite-hydrogenphosphate phosphate iron(II,III) mixed-valence organically templated compound[J]. Angewandte Chemie International Edition, 2004, 43(8): 977-980.
[39] Fan Y, Song T Y, Feng S H. Hydrothermal synthesis, crystal structures, and magnetic properties of a novel three-dimensional iron phosphite: NH4·[Fe2IIFeIII(HPO3)4][J]. Inorganic Chemistry Communications, 2005, 8 (8): 661-664.
[40] Fernández-Armas S, Mesa J L, Rojo T. A new organically templated monodimensional mixed valence(FeII/FeIII) phosphite: (C4H12N2)[FeIIFeIII (HPO3)2F3] solvothermal synthesis, crystal structure, spectroscopic and magnetic properties[J]. Materials Research Bulletin, 2007, 42(3): 544-552.
[41] Orive J, Arriortua M I, Plazaola F. Fluorinated mixed valence Fe(II)- Fe(III) phosphites with channels templated by linear tetramine chains. structural and magnetic implications of partial replacement of Fe(II) by Co(II)[J]. CrystEngComm, 2014, 16: 6066-6079.
[42] Liu L, Wang X F, Xu L. Synthesis, characterization and magnetic properties of a novel fluorinated iron phosphite Fe2(HPO3)F2 with infinite -Fe-F-Fe-O-Fe- linkage and -Fe-F-Fe-layer[J]. Inorganica Chimica Acta, 2009, 362(10): 3881-3884.
[43] Mandal S, Natarajan S, Pati S K. Inorganic organic hybrid compounds: synthesis, structure, and magnetic properties of the first organically templated iron oxalate phosphite, [C4N2H12] [Fe4II(HPO3)2(C2O4)3], possessing infinite Fe - O - Fe chains[J]. Chemistry of Materials, 2005, 17(11): 2912-2917.
[44] Jing X M, Zhang L R, Liu Y L. Hydrothermal synthesis and characterization of two novel three-dimensional vanadium phosphites: | (C10H10N2)|[V2IVO2(HPO3)2(H2PO3)2] and |(C4H16N3)|-[V2IVVIIIO2F2(HPO3)4][J]. Microporous and Mesoporous Materials, 2008, 116(1-3): 101-107.
[45] Chiang R K, Chuang N T. Hydrothermal synthesis and structure characterization of a new 3D vanadium hydrogen phosphite with 14-ring channels: (C5N2H14) [VO(H2O)]3(HPO3)4 · H2O[J]. Journal of Solid State Chemistry, 2005, 178(10): 3040-3045.
[46] Huang H L, Wang S L. An extraordinary boron-mediated 16R-channelcontaining trivalent vanadium phosphite with unique solid state redox properties[J]. Chemic Communications,, 2010, 46(33): 6141-6143.
[47] Houlding V H, Miskowski V M. Photophysical and photochemical properties of cobalt(III) phosphite complexes[J]. Inorganic Chemistry, 1984, 23(26): 4671-4675.
[48] Fan J, Hanson B E, Yee G T. Syntheses, structures, and magnetic properties of inorganic-organic hybrid cobalt(II) phosphites containing bifunctional ligands[J]. Inorganic Chemistry, 2006, 45(2): 599-608.
[49] Liu X C, Xing Y, Xing Y. Chirality and magnetism of an open framework cobalt phosphite containing helical channels from achiral materials[J]. Chemic Communications, 2010, 46(15): 2614-2616.
[50] Mandal S, Natarajan S. Inorganic-organic hybrid structure: Synthesis, structure and magneticproperties of a cobalt phosphite-oxalate,[C4N2H12][Co4(HPO3)2(C2O4)3][J]. Journal of Solid State Chemistry, 2005, 178(7): 2376-2382.
[51] Liu L, Luo D B, Lin Z E. Solvent-free synthesis of new metal phosphiteoxalates with open-framework structures[J]. Dalton Transactions, 2014, 43: 7695-7698.
[52] Gu Z J, Ma Y, Yao J N. Controlled hydrothermal synthesis of nickel phosphite nanocrystals with hierarchical superstructures[J]. Crystal Growth & Design, 2007, 7(4): 825-830.
[53] Fernández S, Mesa J L, Rojo T. (C2H10N2) [Cr(HPO3)F3]: The first organically templated fluorochromium(III) phosphite[J]. Angewandte Chemie International Edition, 2002, 41(19): 3683-3685.
[54] Mandal S, Natarajan S, Chandra M. Synthesis, structure, and upconversion studies on organically templated uranium phosphites[J]. Inorganic Chemistry, 2007, 46(19): 7935-7943.
[55] Liang J, Li J Y, Yu J H. Synthesis and characterization of two new open-framework zinc phosphites [M(C6N4H18)] [Zn3(HPO3)4] (M=Ni,Co) with multi-directional intersecting 12-membered ring channels[J]. Journal of Solid State Chemistry, 2005, 178(9): 2673-2679.
[56] Yang Y L, Li N, Xiang S H. Metal phosphite containing 24-ring channels with 10-ring windows[J]. Chemistry of Materials, 2007, 19 (8): 1889-1891.
[57] Lai Y L, Lii K H, Wang S L. 26-ring-channel structure constructed from bimetal phosphite helical chains[J]. Journal of the American Chemical Society, 2007, 129(17): 5350-5351.