综述文章

亚磷酸盐微孔化合物研究进展

  • 马红微 ,
  • 左萌萌 ,
  • 黄亮亮
展开
  • 辽宁石油化工大学化学化工与环境学部, 抚顺 113001
马红微,硕士研究生,研究方向为新型功能材料,电子信箱:475497823@qq.com

收稿日期: 2014-10-27

  修回日期: 2015-01-30

  网络出版日期: 2015-05-04

基金资助

国家自然科学基金项目(21201095);辽宁省教育厅一般项目(L2013151)

Progress of metal phosphite microporous compounds

  • MA Hongwei ,
  • ZUO Mengmeng ,
  • HUANG Liangliang
Expand
  • College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China

Received date: 2014-10-27

  Revised date: 2015-01-30

  Online published: 2015-05-04

摘要

由于微孔材料独特的结构特点及在分离、吸附、离子交换和催化等方面的应用,探索合成具有新颖结构的微孔化合物成为当今研究的热点。磷酸盐分子筛是应用和研究最为广泛的一类微孔材料。亚磷酸盐微孔化合物作为磷酸盐分子筛材料的延伸,近年来引起科学家的极大兴趣。人们致力于合成具有大孔、螺旋、手性骨架等新颖结构的亚磷酸盐系列化合物,在很大程度上推动了微孔化合物的研究。目前,亚磷酸盐微孔化合物的研究已经涉及到元素周期表中的大部分金属元素,合成方法多样,所用模板剂种类繁多。通过对不同金属亚磷酸盐的综述,总结了亚磷酸盐化合物的结构特点、合成方法及模板剂在化合物合成中所起的作用,并介绍了其最新研究进展。

本文引用格式

马红微 , 左萌萌 , 黄亮亮 . 亚磷酸盐微孔化合物研究进展[J]. 科技导报, 2015 , 33(7) : 100 -107 . DOI: 10.3981/j.issn.1000-7857.2015.07.017

Abstract

The design and synthesis of novel microporous materials are topics of current interest and of great challenge in materials science, not only because of their rich structural chemistry but also owing to their potential applications in the fields of separation, adsorption, photochemistry and catalysis. Metal phosphate is one of the most important inorganic framework materials in application. As an extension of metal phosphate, much attention has been paid to metal phosphite. In recent years, a series of metal phosphites with novel structures have been synthesized, such as large channels and helical and chiral open-framework. Syntheses of these new compounds with open-framework open a new field for microporous compounds. The study of metal phosphite has involved most metal elements in the periodic table and various synthetic methods and templates. This review introduces different metal phosphites, summarizing their structural features and the role of templates in synthesis and discussing recent research progress.

参考文献

[1] Cheetham A K, Férey G, Loiseau T. Open-framework inorganic materials[J]. Angewandte Chemie International Edition, 1999, 38(22): 3268-3292.
[2] de St Claire-Deville H. Reproduction de la levyne[J]. Comptes Rendus, 1862, 54(1862): 324-327.
[3] Bonavia G, Debord J, Haushalter R C. Hydrothermal synthesis and characterization of two-and three-dimensional solids of the oxovanadium (IV)-phosphite system. The structures of [HN(Me) (CH2CH2)2 N(Me)H][(VO)4(OH)2(HPO3)4], [H2N(CH2CH2)2NH2] [(VO)3(HPO3)4(H2O)2], and [VO (HPO3)(H2O)][J]. Chemistry of Materials, 1995, 7(11): 1995-1998.
[4] Poojary D M, Zhang Y P, Clearfield A. Synthesis and crystal structures of aluminum and iron phosphites[J]. Journal of Chemical Crystallography, 1994, 24(2): 155-163.
[5] Li N, Xiang S H. Hydrothermal synthesis and crystal structure of two novel alumino -phosphites containing infinite Al—O—Al chains[J]. Journal of Material Chemistry, 2002, 12(5): 1397-1400.
[6] Harvey H G, Hu J, Attfield M P. Synthesis, structural characterization, and readsorption behavior of a solid solution aluminum phosphite/ ethylenediphosphonate series[J]. Chemistry of Materials, 2003, 15(1): 179-188.
[7] Xiang Y, Zhang L W, Zeng Q X. Synthesis and characterization of a new organically templated aluminophosphite with a chainlike structure[J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 2007, 633 (10): 1727-1730.
[8] Yang Y, Zhao Y N, Yu J G. Two neutral open-framework metal phosphites with ten-ring channels constructed by three-, four-, and five-connected centers[J]. Chemistry Letters, 2008, 37(7): 678-679.
[9] Li X, Luo D B, Lin Z E. Solvothermal synthesis of new open-framework metal phosphites with structure-directing agents generated in situ[J]. Solid State Sciences, 2013, 19: 80-84.
[10] Wang L, Song T Y, Shi S H. Ga3(HPO3)4F4(H3DETA) (DETA = diethylenetriamine): A new open-framework fluorinated gallium phosphite with pentameric building unit[J]. Journal of Solid State Chemistry, 2006, 179(3): 824-829.
[11] Wang L, Song T Y, Shi S H. Synthesis and characterization of a new open-framework fluorinated gallium phosphite with three-dimensional intersecting channels[J]. Journal of Solid State Chemistry, 2006, 179 (11): 3400-3405.
[12] Zhou G P, Yang Y L, Fan R Q. The first organically templated gallium phosphite-oxalates: Synthesis, structures, and characterizationseer[J]. Solid State Sciences, 2010, 12(5): 873-881.
[13] Huang L L, Fan Y, Wang L. Synthesis and characterizations of two NbO topological gallium phosphites with low framework density[J]. Microporous and Mesoporous Materials, 2014, 196(15): 321-326.
[14] Jhang P C, Yang Y C, Wang S L. A fully integrated nanotubular yellow-green phosphor from an environmentally friendly eutectic solvent[J]. Angewandte Chemie International Edition, 2009, 48(4): 742-745.
[15] Yi Z, Chen C, Pang W Q. Hydrothermal synthesis and structural characterization of the first indium phosphite In2(HPO3)3(H2O) [J]. Inorganic Chemistry Communications, 2005, 8(2): 166-169.
[16] Wang L, Song T Y, Shi S H. Synthesis and characterization of two new organically templated indium phosphites built from one-dimensional ladders[J]. Microporous and Mesoporous Materials, 2006, 96(1-3): 287-292.
[17] 刘成站. In(HPO3)·(NH3CH2CH2NH3)·(H2O)的水热合成与晶体结构[J]. 高等学校化学学报, 2007, 28(9): 1637-1639. Liu Chengzhan. Hydrothermal synthesis and characterization of a new indium phosphite In(HPO3) · (NH3CH2CH2NH3) · (H2O) with intersecting twelve-membered ring channels[J]. Chemical Journal of Chinese Universities, 2007, 28(9): 1637-1639.
[18] Ramaswamy P, Natarajan S, Hegde N N. Synthesis, structure and transformation studies in a family of inorganic-organic hybrid framework structures based on indium[J]. Inorganic Chemistry, 2009, 48(24): 11697-11711.
[19] Li H D, Zhang L R, Liu Y L. Organic template-directed indium phosphite-oxalate hybrid material: synthesis and characterization of a novel 3D |C6H14N2|[In2(HPO3)3(C2O4)] compound with intersecting channels[J]. Inorganic Chemistry Communications, 2009, 12(10): 1020-1023.
[20] Huang L L, Song T Y, Wang L. Hydrothermal syntheses, characterizations of novel three-dimensional indium phosphite and indium phosphite-phosphate with intersecting 8-membered ring channels: [In3(H2PO3)3 (HPO3)4] · (trans-C6N2H16) and [In6(HPO3)8(H2PO3)5(H2PO4)] · (C3N2H12)2[J]. Microporous and Mesoporous Materials, 2010, 132(3): 409-413.
[21] Wang L, Shi S H, Song T Y. (H3NC2H4NH3)[In(OH)3(HPO3)]: The first organically templated indium phosphite[J]. Inorganic Chemistry Communications, 2005, 8(3): 271-273.
[22] Huang L L, Song T Y, Wang L. Synthesis and characterization of a new chiral open-framework indium phosphite with intertwined host and guest helices[J]. Microporous and Mesoporous Materials, 2012, 149(1): 95-100.
[23] Li H D, Liu Y L, Zhang L R. Construction of two novel indium phosphites with (3,6)-and (3,5)-connected frameworks: Synthesis, structure and characterization[J]. Journal of Solid State Chemistry, 2013, 197: 75-80.
[24] Wang X L, Li J Y, Yan Y. Solvothermal syntheses and structures of four indium-phosphite coordination polymers[J]. Cryst Eng Comm, 2014, 16(11): 2266-2272.
[25] Fu W S, Feng S H, Wang L. The first organically templated beryllium phosphite [NH3(CH2)3NH3]·Be3(HPO3)4: Hydrothermal synthesis and X-ray crystal structure[J]. Crystal Growth & Design, 2004, 4(2): 297-300.
[26] Luo X C, Lin Z E, Luo D B. (C2H8N)2[Be3(HPO3)4]: A low-density beryllium phosphite with large 16-membered rings and helical channels[J]. CrystEngComm, 2011, 13(11): 3646-3648.
[27] Liang J, Yu J H, Xu R R. Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains[J]. Chemical Communications, 2003(7): 882-883.
[28] Chung U C, Mesa J L, Pizarro J L. Structural, thermal, spectroscopic, specific-heat, andmagnetic studies of (C5H18N3)[Fe3(HPO3)6]·3H2O: A new organically templated iron(III) phosphite with a pillared structure formed by the interpenetration of two subnets[J]. Inorganic Chemistry, 2006, 45(22): 8965-8972.
[29] Ramaswamy P, Natarajan S, Mandal S. Synthesis, structure, and magnetic properties of amine-templated transition-metal phosphites[J]. European Journal of Inorganic Chemistry, 2010, 2010(12): 1829-1838.
[30] Zhao L, Yu J H, Li J Y. 2H3O·[Co8(HPO3)9(CH3OH)3]·2H2O: An open-framework cobalt phosphite containing extra-large 18-ring channels[J]. Chemistry of Materias, 2008, 20(1): 17-19.
[31] Xing H Z, Nakano Takehito, Yu J H. Ionothermal synthesis of extralarge-pore open-framework nickel phosphite 5H3O·[Ni8(HPO3)9Cl3]· 1.5H2O: Magnetic anisotropy of the antiferromagnetism[J]. Angewandte Chemie International Edition, 2010, 49(13): 2328-2331.
[32] Wang Y, Yu J H, Xu R R. Hydrothermal synthesis and characterization of a new inorganic-organic hybrid layered zinc phosphate-phosphite[J]. Journal of the Chemical Society, Dalton Transactions, 2002, 21: 4060-4063.
[33] Gordon L E, Harrison W T A. Amino acid templating of inorganic networks: Synthesis and structure of l-asparagine zinc phosphite, C4N2O3H8·ZnHPO3[J]. Inorganic Chemistry, 2004, 43(6): 1808-1809.
[34] Liang J, Li J Y, Yu J H. [(C4H12N)2][Zn3(HPO3)4]: An open-framework zinc phosphite containing extra-large 24-ring channels[J]. Angewandte Chemie International Edition, 2006, 45(16): 2546-2548.
[35] Song D S, Su D P, Fu Z Y. Synthesis, characterization, and catalytic behavior of two open-framework zinc phosphites with 2D and 3D structures[J]. Inorganic Chemistry Communications, 2011,14(1): 150-154.
[36] Orive J, Larrea E S, Arriortua M L. Amine templated open-framework vanadium(III) phosphites with catalytic properties[J]. Dalton Transactions, 2013, 42: 4500-4512.
[37] Ensling J, Gütlich P, Kniep R. Ferric phosphite: Dimers of face sharing FeIIIO6 octahedra. crystal structure redetermination, mossbauer spectra, magnetic susceptibility, and heat capacity data[J]. Inorganic Chemistry, 1994, 33(16): 3595-3597.
[38] Fernández-Armas S, Mesa J L, Prof T R. (C4N2H12)[Fe0.86IIFe1.14III(HPO3) 1.39(HPO4)0.47(PO4)0.14F3]: A fluoro-phosphite-hydrogenphosphate phosphate iron(II,III) mixed-valence organically templated compound[J]. Angewandte Chemie International Edition, 2004, 43(8): 977-980.
[39] Fan Y, Song T Y, Feng S H. Hydrothermal synthesis, crystal structures, and magnetic properties of a novel three-dimensional iron phosphite: NH4·[Fe2IIFeIII(HPO3)4][J]. Inorganic Chemistry Communications, 2005, 8 (8): 661-664.
[40] Fernández-Armas S, Mesa J L, Rojo T. A new organically templated monodimensional mixed valence(FeII/FeIII) phosphite: (C4H12N2)[FeIIFeIII (HPO3)2F3] solvothermal synthesis, crystal structure, spectroscopic and magnetic properties[J]. Materials Research Bulletin, 2007, 42(3): 544-552.
[41] Orive J, Arriortua M I, Plazaola F. Fluorinated mixed valence Fe(II)- Fe(III) phosphites with channels templated by linear tetramine chains. structural and magnetic implications of partial replacement of Fe(II) by Co(II)[J]. CrystEngComm, 2014, 16: 6066-6079.
[42] Liu L, Wang X F, Xu L. Synthesis, characterization and magnetic properties of a novel fluorinated iron phosphite Fe2(HPO3)F2 with infinite -Fe-F-Fe-O-Fe- linkage and -Fe-F-Fe-layer[J]. Inorganica Chimica Acta, 2009, 362(10): 3881-3884.
[43] Mandal S, Natarajan S, Pati S K. Inorganic organic hybrid compounds: synthesis, structure, and magnetic properties of the first organically templated iron oxalate phosphite, [C4N2H12] [Fe4II(HPO3)2(C2O4)3], possessing infinite Fe - O - Fe chains[J]. Chemistry of Materials, 2005, 17(11): 2912-2917.
[44] Jing X M, Zhang L R, Liu Y L. Hydrothermal synthesis and characterization of two novel three-dimensional vanadium phosphites: | (C10H10N2)|[V2IVO2(HPO3)2(H2PO3)2] and |(C4H16N3)|-[V2IVVIIIO2F2(HPO3)4][J]. Microporous and Mesoporous Materials, 2008, 116(1-3): 101-107.
[45] Chiang R K, Chuang N T. Hydrothermal synthesis and structure characterization of a new 3D vanadium hydrogen phosphite with 14-ring channels: (C5N2H14) [VO(H2O)]3(HPO3)4 · H2O[J]. Journal of Solid State Chemistry, 2005, 178(10): 3040-3045.
[46] Huang H L, Wang S L. An extraordinary boron-mediated 16R-channelcontaining trivalent vanadium phosphite with unique solid state redox properties[J]. Chemic Communications,, 2010, 46(33): 6141-6143.
[47] Houlding V H, Miskowski V M. Photophysical and photochemical properties of cobalt(III) phosphite complexes[J]. Inorganic Chemistry, 1984, 23(26): 4671-4675.
[48] Fan J, Hanson B E, Yee G T. Syntheses, structures, and magnetic properties of inorganic-organic hybrid cobalt(II) phosphites containing bifunctional ligands[J]. Inorganic Chemistry, 2006, 45(2): 599-608.
[49] Liu X C, Xing Y, Xing Y. Chirality and magnetism of an open framework cobalt phosphite containing helical channels from achiral materials[J]. Chemic Communications, 2010, 46(15): 2614-2616.
[50] Mandal S, Natarajan S. Inorganic-organic hybrid structure: Synthesis, structure and magneticproperties of a cobalt phosphite-oxalate,[C4N2H12][Co4(HPO3)2(C2O4)3][J]. Journal of Solid State Chemistry, 2005, 178(7): 2376-2382.
[51] Liu L, Luo D B, Lin Z E. Solvent-free synthesis of new metal phosphiteoxalates with open-framework structures[J]. Dalton Transactions, 2014, 43: 7695-7698.
[52] Gu Z J, Ma Y, Yao J N. Controlled hydrothermal synthesis of nickel phosphite nanocrystals with hierarchical superstructures[J]. Crystal Growth & Design, 2007, 7(4): 825-830.
[53] Fernández S, Mesa J L, Rojo T. (C2H10N2) [Cr(HPO3)F3]: The first organically templated fluorochromium(III) phosphite[J]. Angewandte Chemie International Edition, 2002, 41(19): 3683-3685.
[54] Mandal S, Natarajan S, Chandra M. Synthesis, structure, and upconversion studies on organically templated uranium phosphites[J]. Inorganic Chemistry, 2007, 46(19): 7935-7943.
[55] Liang J, Li J Y, Yu J H. Synthesis and characterization of two new open-framework zinc phosphites [M(C6N4H18)] [Zn3(HPO3)4] (M=Ni,Co) with multi-directional intersecting 12-membered ring channels[J]. Journal of Solid State Chemistry, 2005, 178(9): 2673-2679.
[56] Yang Y L, Li N, Xiang S H. Metal phosphite containing 24-ring channels with 10-ring windows[J]. Chemistry of Materials, 2007, 19 (8): 1889-1891.
[57] Lai Y L, Lii K H, Wang S L. 26-ring-channel structure constructed from bimetal phosphite helical chains[J]. Journal of the American Chemical Society, 2007, 129(17): 5350-5351.
文章导航

/