为了筛选制备耐低温高效降解农业生物质废弃物的复合菌剂,在已获得的耐低温木质纤维素降解菌群A25-3 的基础上,采用混料设计(mixture design)对复合菌比例进行优化,通过测定菌群A25-3、酿酒酵母(Saccharomyces cerevisiae)和绿色木霉(Trichoderma viride)不同比例搭配对纤维素酶(CMCase、滤纸酶和外切葡聚糖酶)、蛋白酶和α-淀粉酶活性的影响,建立了各菌株(群)搭配比例与试验指标之间的回归方程。使用Design Expert 8.0 软件的优化功能对满足所有期望的响应值进行优化,得到复合菌的最优配比(质量分数)为绿色木霉37.24%,菌群A25-3 67.76%。对该最优比例进行验证试验,得到的结果与预测值基本一致。秸秆降解试验表明,固体复合菌剂可高效降解秸秆,有效提高堆肥体系的温度,在低温环境下的堆肥和秸秆腐熟具有很好的应用前景。
In this paper, an optimum mixture design is used for the preparation of cold-adapted multiple species inoculant. Based on the Design Expert software, a quadratic model is established as a function of the component fractions of species, such as the Saccharomyces cerevisiae, the Trichoderma viride and the flora A25-3, on the enzyme activity of the CMCase, the FPase, the cellobiohydrolase, the proteinase and the α-amylase. The response values satisfying all expectations are optimized,and the most excellent combinations of the Saccharomyces cerevisiae, the Trichoderma viride and the flora A25-3 are 0%, 37.24% and 67.76%, respectively. The result of the verification experiment on the formulation is consistent with the prediction. The straw degradation experiments show that the multiple species inoculant has a high level of degradation efficiency for the straw at a low temperature. It suggests that there is a great application prospect of the multiple species inoculant under cold conditions.
[1] 张俙何, 洪春来, 朱凤香, 等. 农业废弃物资源化利用现状与前景展望[J]. 现代农业科技, 2013(20): 209, 218. Zhang Xihe, Hong Chunlai, Zhu Fengxiang, et al. Agricultural waste recycling use present situation and prospect[J]. Modern Agricultural Science and Technology, 2013(20): 209, 218.
[2] Gilbert H J. The biochemistry and structural biology of plant cell wall deconstruction[J]. Plant Physiology, 2010, 153(2): 444-55.
[3] Kubicek C P. Systems biological approaches towards understanding cellulase production by Trichoderma reesei[J]. Journal of Biotechnology, 2013, 163(2): 133-142.
[4] Banerjee G, Car S, Scott-Craig J S, et al. Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass[J]. Bioresource Technology, 2010, 101(23): 9097-9105.
[5] McClendon S, Batth T, Petzold C, et al. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions[J]. Biotechnology for Biofuels, 2012, 5(1): 1-10.
[6] InoueH,DeckerS.R,TaylorL.E,etal,Identificationandcharacterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass[J]. Biotechnology for Biofuels, 2014, 7(1): 151.
[7] 唐景春. 生物质废弃物堆肥过程与调控[M]. 北京: 中国环境科学出版社, 2010: 17. Tang Jingchun. Biomass waste composting process and regulation[M]. Beijing: China Environmental Science Press, 2010: 17.
[8] 曲音波. 木质纤维素降解酶系的基础和技术研究进展[J]. 山东大学学报: 理学版, 2011, 46(10): 160-170. Qu Yinbo. Progress in basic and technological research of enzyme system for lignocellulosics biodegradation[J]. Journal of Shandong University: Natural Science Edition, 2011, 46(10): 160-170.
[9] Feng Y, Shao D, Zhao D Q, et al. Comparative evaluation of Trichoderma cellulases adsorption on lignocellulose and holocellulose from steampretreated Lespedeza crytobotrya stalk[J]. Journal of Biobased Materials and Bioenergy, 2014, 8(1): 43-49.
[10] Chen Y, Huang J, Li Y, et al. Study of the rice straw biodegradation in mixed culture of Trichoderma viride and Aspergillus niger by GCMS and FTIR[J]. Environmental Science and Pollution Research, 2015: 1-9. doi: 10.1007/s11356-015-4149-8. (Published online)
[11] Iqtedar M, Nadeem M, Naeem H, et al. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum[J]. Natural Product Research, 2014: 1-8. doi: 10.1080/14786419.2014.971320. (Published online)
[12] Wang Z, Ong H X, Geng A. Cellulase production and oil palm empty fruit bunch saccharification by a new isolate of Trichoderma koningii D-64[J]. Process Biochemistry, 2012, 47(11): 1564-1571.
[13] Wang Z, Bay H, Chew K, et al. High-loading oil palm empty fruit bunch saccharification using cellulases from Trichoderma koningii MF6[J]. Process Biochemistry, 2014, 49(4): 673-680.
[14] Zhou Q, Lü X, Zhang X, et al. Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings[J]. World Journal of Microbiology and Biotechnology, 2011, 27(8): 1905-1910.
[15] Adachi D, Koda R, Hama S, et al. An integrative process model of enzymatic biodiesel production through ethanol fermentation of brown rice followed by lipase- catalyzed ethanolysis in a water- containing system[J]. Enzyme and Microbial Technology, 2013, 52(2): 118-122.
[16] Acourene S, Ammouche A. Optimization of ethanol, citric acid, and α- amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(5): 759-766.
[17] Hagman A, Piškur J. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast[J]. PloS One, 2015, 10(1): e0116942.
[18] Nwobi A, Cybulska I, Tesfai W, et al. Simultaneous saccharification and fermentation of solid household waste following mild pretreatment using a mix of hydrolytic enzymes in combination with Saccharomyces cerevisiae[J]. Applied Microbiology and Bbiotechnology, 2014, 99(2): 929-38.
[19] Wang Y J, Yan L, Wang W D, et al. Effect of microbiological inocula on composting of cow manure[J]. Journal of Pure and Applied Microbiology, 2014, 8(3): 1867-1873.
[20] 中华人民共和国农业部. NY 609—2002有机物料腐熟剂[S]. 北京: 中国标准出版社, 2002. Ministry of Agriculture of the People's Republic of China. NY 609- 2002 organic matter- decomposing inoculants[S]. Beijing: Standards Press of China, 2002.
[21] 吕志伟. 木质纤维素降解菌群的酶学特性及应用研究[D]. 北京: 中国农业大学博士学位论文, 2009. Lü Zhiwei. Enzymology and application research of lignocellulosedegrading microbial community[D]. Beijing: China Agriculture University Academic Dissertation, 2009.
[22] Nikzade V, Tehrani M M, Saadatmand-Tarzjan M. Optimization of low- cholesterol low- fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach[J]. Food Hydrocolloids, 2012, 28(2): 344-352.
[23] Pauli E D, Malta G B, Sanchez P M, et al. Mixture design analysis of solvent extractor effects on epicatechin, epigallocatechin gallate, epigallocatechin and antioxidant activities of the Camellia sinensis L. leaves[J]. Analytical Chemistry Research, 2014, 11(2): 23-29.
[24] Jeirani Z, Jan B M, Ali B S, et al. The optimal mixture design of experiments: Alternative method in optimizing the aqueous phase composition of a microemulsion[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 112(3): 1-7.
[25] Chen F, Liu S S, Duan X T, et al. Predicting the mixture effects of three pesticides by integrating molecular simulation with concentration addition modeling[J]. RSC Advances, 2014, 61(4): 32256-32262.
[26] Kurnia Y F, Yasni S, Nurtama B. Optimation formula of goat milk yoghurt and white oyster mushroom powder with mixture design methods[J]. Pakistan Journal of Nutrition, 2014, 13(5): 296-302.
[27] El-Dahmy R M, Elsayed I, Elshafeey A H, et al. Optimization of long circulating mixed polymeric micelles containing vinpocetine using simple lattice mixture design, in vitro and in vivo characterization[J]. International Journal of Pharmaceutics, 2014, 477(1): 39-46.
[28] 林艳梅, 生吉萍, 申琳, 等. 适冷纤维素降解微生物研究进展[J].生物技术, 2010, 20(2): 95-98. Lin Yanmei, Sheng Jiping, Shen Lin, et al. Trends in cold-adapted and cellulose- degrading microorganisms[J]. Biotechnology, 2010, 20 (2): 95-98.
[29] Sánchez C. Lignocellulosic residues: Biodegradation and bioconversion by fungi[J]. Biotechnology Advances, 2009, 27(2): 185-194.