研究论文

基于水动力学理论的微观流动单元渗流数学模型

  • 武男 ,
  • 朱维耀 ,
  • 石成方 ,
  • 叶继根 ,
  • 龙运前
展开
  • 1. 北京科技大学土木与环境工程学院, 北京100083;
    2. 中国石油勘探开发研究院, 北京100083;
    3. 浙江海洋学院创新应用研究院, 舟山316022
武男,博士研究生,研究方向为油气田开发与渗流力学基础,电子信箱:w284451337n@126.com;朱维耀,教授,研究方向为渗流力学、流体力学和油气田开发,电子信箱:weiyaok@sina.com

收稿日期: 2014-12-30

  修回日期: 2015-02-04

  网络出版日期: 2015-05-05

基金资助

国家科技重大专项(2011ZX05010-002)

Seepage flow mathematical model of micro-flow units based on hydrodynamics theory

  • WU Nan ,
  • ZHU Weiyao ,
  • SHI Chengfang ,
  • YE Jigen ,
  • LONG Yunqian
Expand
  • 1. Civil and Environmental Engineering School, University of Science & Technology Beijing, Beijing 100083, China;
    2. Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    3. Innovation Application Research Institute, Zhejiang Ocean University, Zhoushan 316022, China

Received date: 2014-12-30

  Revised date: 2015-02-04

  Online published: 2015-05-05

摘要

为了研究非均质油藏内部渗流规律,反映不同开发阶段地层中流体流动规律及分布特征,揭示流场变化与储层特征间的内在联系。本文基于水动力学原理及流线簇方程,提出储层中波及范围内具有相似流动规律及储层特征的渗流区域为微观流动单元,建立流量贡献率、流动单元流量非均匀分布曲线和流量强度差异系数渗流数学模型,通过流动单元的区域流量对总产量贡献的大小进行划分,建立流动单元高速流动区与低速流动区的划分准则。通过对五点井网一个注采单元的模拟,结合流线簇方程进行表征,结果表明,高速流动区能量充足,其占整个流动单元面积的53.7%,提供了总流量的61.7%,为流量的主要贡献区域;低速流动区域占整个流动单元总面积的46.3%,只提供了总流量的38.3%。

本文引用格式

武男 , 朱维耀 , 石成方 , 叶继根 , 龙运前 . 基于水动力学理论的微观流动单元渗流数学模型[J]. 科技导报, 2015 , 33(8) : 63 -67 . DOI: 10.3981/j.issn.1000-7857.2015.08.010

Abstract

This paper studies the seepage law in heterogeneous reservoir to find out the flowing law and distribution of fluids at different development stages for revealing the internal relations between flow field and reservoir characteristics. Based on hydrodynamics theory and streamline cluster equation, this paper proposes that the seepage region which has similar fluid flowing law and reservoir characteristics is a micro- flow unit. The seepage flow mathematical model of the contribution rate of flow (CRF), nonuniform distribution curve of flow units (NDCFU) and the difference coefficient of flow intension (DCFI) has been established, and the principle for dividing high and low velocity flow area is based on the flow contribution rate of flow units. Simulation of constantrate water flooding dynamics in an injection-production unit of the inverted 5-spot pattern and plotting by means of streamline cluster equation show that the high velocity flow area had sufficient driving energy, occupying 53.7% of the entire flow unit area, but providing 61.7% of the total flow, and contributing most to the production. The low velocity flow area occupied 46.3% of the entire flow unit area, but only provided 38.3% of the total flow.

参考文献

[1] 窦之林. 储层流动单元研究[M]. 北京: 石油工业出版社, 2000. Dou Zhilin. The study on flow unit of reservoir[M]. Beijing: Petroleum Industry Press, 2000.
[2] 靳彦欣, 林承焰, 赵丽, 等. 关于用FZI划分流动单元的探讨[J]. 石油勘探与开发, 2004, 31(5): 130-132. Jin Yanxin, Lin Chengyan, Zhao Li, et al. Discussions on FZI methodology in flow unit identification[J]. Petroleum Exploration and Development, 2004, 31(5): 130-132.
[3] 彭仕宓, 尹志军, 常学军, 等. 陆相储集层流动单元定量研究新方法[J]. 石油勘探与开发, 2001, 28(5): 68-70. Peng Shibi, Yin Zhijun, Chang Xuejun, et al. A new quantitative method to study flow unit of non- marine reservoir[J]. Petroleum Exploration and Development, 2001, 28(5): 68-70.
[4] 李伟才, 姚光庆, 周锋德, 等. 低渗透油藏不同流动单元并联水驱油[J]. 石油学报, 2011, 32(4): 658-663. Li Weicai, Yao Guangqing, Zhou Fengde, et al. Water displacing oil efficiency with cores grouped in parallel of different flow units in lowpermeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(4): 658-663.
[5] Aggoun R C, Tiab D, Owayed J F. Characterization of flow units in shaly sand reservoirs—Hassi R'mel Oil Rim Algeria[J]. Journal of Petroleum Science and Engineering, 2006, 50(3): 211-226.
[6] 何应付, 尹洪军, 刘莉, 等. 复杂边界非均质渗流场流线分布研究[J]. 计算力学学报, 2007, 24(5): 708-712. He Yingfu, Yin Hongjun, Liu Li, et al. Research on streamline distribution of flow through heterogeneous porous media with complex boundary[J]. Chinese Journal of Computational Mechanics, 2007, 24(5): 708-712.
[7] 侯健, 孙焕泉, 李振泉, 等. 微生物驱油数学模型及其流线方法模拟[J]. 石油学报, 2003, 24(3): 56-60. Hou Jian, Sun Huanquan, Li Zhenquan, et al. Mathematical model and simulation of streamline method for microbial flooding[J]. Acta Petrolei Sinica, 2003, 24(3): 56-60.
[8] 张林, 张春阳. 中高渗储层优势通道定量表征方法初探[J]. 新疆石油天然气, 2012, 8(2): 50-53. Zhang Lin, Zhang Chunyang. Quantitative characterization of dominant water channel in high permeability reservoir[J]. Xinjiang Oil & Gas, 2012, 8(2): 50-53.
[9] Jongkittinarukorn K, Tiab D. Identification of flow units in shaly sand reservoirs[J]. Journal of Petroleum Science and Engineering, 1997, 17 (3): 237-246.
[10] Bandilla K W, Rabideau A J, Janković I. A parallel mesh-free contaminant transport model based on the Analytic Element and Streamline Methods[J]. Advances in Water Resources, 2009, 32(8): 1143-1153.
文章导航

/