综述文章

组蛋白甲基化的阅读器识别机制研究进展

  • 赵帅 ,
  • 苏晓楠 ,
  • 李元元 ,
  • 李海涛
展开
  • 清华大学医学院基础医学系, 北京100084
赵帅,博士研究生,研究方向为表现遗传调控的分子结构机理,电子信箱:zhao-s13@mails.tsinghua.edu.cn

收稿日期: 2014-11-21

  修回日期: 2015-01-08

  网络出版日期: 2015-05-05

基金资助

国家自然科学基金面上项目(31270763);教育部新世纪优秀人才支持计划项目

Research advances in the mechanism of histone methylation recognition by reader modules

  • ZHAO Shuai ,
  • SU Xiaonan ,
  • LI Yuanyuan ,
  • LI Haitao
Expand
  • Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China

Received date: 2014-11-21

  Revised date: 2015-01-08

  Online published: 2015-05-05

摘要

组蛋白甲基化修饰对遗传信息解读有着重要影响,是表观遗传调控的主要机制之一。组蛋白甲基化可以被一类称作"阅读器"的结构域所特异识别并介导下游生物学事件。本文综述了目前已知的组蛋白甲基化阅读器(包括"皇室家族"成员、PHD锌指及BAH 等结构域)的结构特征及其对于甲基化修饰位点和程度特异性识别的分子基础。另外,探讨了表观遗传修饰调控中的组合识别、修饰对话等概念与机制。

本文引用格式

赵帅 , 苏晓楠 , 李元元 , 李海涛 . 组蛋白甲基化的阅读器识别机制研究进展[J]. 科技导报, 2015 , 33(8) : 94 -100 . DOI: 10.3981/j.issn.1000-7857.2015.08.016

Abstract

As a major mechanism for the epigenetic regulation, the histone methylation has a crucial impact on the decoding of the genetic information. The histone methylation can be recognized by a class of so-called "reader" modules to mediate the downstream functional outcomes. In this paper, we review the structural aspects of the reported histone methylation readers (e.g. "royal family" members, PHD finger, BAH), and illustrate the molecular basis underlying the site- and state- specific readouts of the histone methylation. This review also covers the concepts of the combinatorial readout and the modification crosstalk in the epigenetic regulation.

参考文献

[1] Strahl B D, Allis C D. The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41-45.
[2] Jenuwein T, Allis C D. Translating the histone code [J]. Science, 2001, 293(5532): 1074-1080.
[3] Taverna S D, Li H, Ruthenburg A J, et al. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers[J]. Nature Structural & Molecular Biology, 2007, 14(11): 1025-1040.
[4] Maurer- Stroh S, Dickens N J, Hughes- Davies L, et al. The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains[J]. Trends in Biochemical Sciences, 2003, 28(2): 69-74.
[5] Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain[J]. Nature, 2001, 410(6824): 120-124.
[6] Nielsen P R, Nietlispach D, Mott H R, et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9[J]. Nature, 2002, 416(6876): 103-107.
[7] Flanagan J F, Mi L Z, Chruszcz M, et al. Double chromodomains cooperate to recognize the methylated histone H3 tail[J]. Nature, 2005, 438(7071): 1181-1185.
[8] Chen C, Nott T J, Jin J, et al. Deciphering arginine methylation: Tudor tells the tale[J]. Nature Reviews Molecular Cell Biology, 2011, 12(10): 629-642.
[9] Huang Y, Fang J, Bedford M T, et al. Recognition of histone H3 lysine- 4 methylation by the double tudor domain of JMJD2A[J]. Science, 2006; 312(5774): 748-751.
[10] Botuyan M V, Lee J, Ward I M, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair[J]. Cell, 2006, 127(7): 1361-1373.
[11] Wu H, Zeng H, Lam R, et al. Structural and histone binding ability characterizations of human PWWP domains[J]. Plos One, 2011, 6(6): e18919.
[12] Li H, Fischle W, Wang W, et al. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger[J]. Molecular Cell, 2007, 28(4): 677-691.
[13] Li Y Y, Li H T. Many keys to push: Diversifying the 'readership' of plant homeodomain fingers[J]. Acta Biochimica et Biophysica Sinica, 2012, 44(1): 28-39.
[14] Iwase S, Xiang B, Ghosh S, et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mentalretardation syndrome[J]. Nature Structural & Molecular Biology, 2011, 18(7): 769-776.
[15] Collins R E, Northrop J P, Horton J R, et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules[J]. Nature Structural & Molecular Biology, 2008, 15(3): 245-250.
[16] Kuo A J, Song J K, Cheung P, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome[J]. Nature, 2012, 484(7392): 115-119.
[17] Migliori V, Muller J, Phalke S, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance[J]. Nature Structural & Molecular Biology, 2012, 19(2): 136-144.
[18] Li H T, Ilin S, Wang W K, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF[J]. Nature, 2006, 442(7098): 91-95.
[19] Lan F, Collins R E, De Cegli R, et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression[J]. Nature, 2007, 448(7154): 718-722.
[20] Fiedler M, Sanchez- Barrena M J, Nekrasov M, et al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex[J]. Molecular Cell, 2008; 30(4): 507-518.
[21] Min J R, Allali-Hassani A, Nady N, et al. L3MBTL1 recognition of mono- and dimethylated histones[J]. Nature Structural & Molecular Biology, 2007, 14(12): 1229-1230.
[22] Vakoc C R, Sachdeva M M, Wang H X, et al. Profile of histone lysine methylation across transcribed mammalian chromatin[J]. Nature Structural & Molecular Biology, 2006, 26(24): 9185-9195.
[23] Bian C B, Xu C, Ruan J B, et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation[J]. The EMBO Journal, 2011, 30(14): 2829-2842.
[24] Xi Q R, Wang Z X, Zaromytidou A I, et al. A poised chromatin platform for TGF-beta access to master regulators[J]. Cell, 2011, 147 (7): 1511-1524.
[25] Wen H, Li Y Y, Xi Y X, et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression[J]. Nature, 2014, 508(7495): 263-268.
[26] Su X N, Zhu G X, Ding X Z, et al. Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1 [J]. Genes & Development, 2014, 28(6): 622-636.
[27] Voigt P, LeRoy G, Drury W J, et al. Asymmetrically modified nucleosomes[J]. Cell, 2012, 151(1): 181-193.
[28] Karch K R, Denizio J E, Black B E, et al. Identification and interrogation of combinatorial histone modifications[J]. Frontiers in Genetics, 2013, 4: 264.
[29] Young N L, DiMaggio P A, Plazas-Mayorca M D, et al. High throughput characterization of combinatorial histone codes[J]. Molecular & Cellular Proteomics, 2009, 8(10): 2266-2284.
[30] Tian Z X, Tolic N, Zhao R, et al. Enhanced top-down characterization of histone post-translational modifications[J]. Genome Biology, 2012, 13(10):R86.
[31] Britton L M P, Gonzales-Cope M, Zee B M, et al. Breaking the histone code with quantitative mass spectrometry[J]. Expert Review of Proteomics, 2011, 8(5): 631-43.
[32] EberlHC,MannM,VermeulenM.Quantitativeproteomicsfor epigenetics[J]. Chemical & Pharmaceutical Bulletin, 2011, 12(2): 224-234.
[33] Allis C D, Muir T W. Spreading chromatin into chemical biology[J]. Chemical & Pharmaceutical Bulletin, 2011, 12(2): 264-279.
[34] Horton J R, Upadhyay A K, Qi H H, et al. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases[J]. Nature Structural & Molecular Biology, 2010, 17(1): 38-43.
[35] Seet B T, Dikic I, Zhou M M, et al. Reading protein modifications with interaction domains[J]. Nature Reviews Molecular Cell Biology, 2006, 7(7): 473-483.
[36] Klein B J, Lalonde M E, Cote J, et al. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes[J]. Epigenetics, 2014, 9(2): 186-193.
[37] Bailey A O, Panchenko T, Sathyan K M, et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11827-11832.
[38] Tessarz P, Santos-Rosa H, Robson S, et al. Glutamine methylation in histone H2A is an RNA- polymerase- I- dedicated modification[J]. Nature, 2014, 505(7484): 564-568.
[39] Greer E L, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance[J]. Nature Reviews Genetics, 2012, 13(5): 345-357.
[40] Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease[J]. Journal of Natural Medicines, 2012, 18(8): 1194-1204.
[41] Chi P, Allis C D, Wang G G. Covalent histone modifications: Miswritten, misinterpreted and mis-erased in human cancers[J]. Nature Reviews Cancer, 2010, 10(7): 457-469.
[42] James L I, Barsyte-Lovejoy D, Zhong N, et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain[J]. Physical Chemistry, 2013, 9(3): 184-191.
文章导航

/