以外墙保温板残料为原料, 采用碱活化法制备活性炭。借助傅里叶红外光谱(FT-IR)、X-射线衍射(XRD)、BET 比表面积、孔径分布和碘值进行表征。使用外墙保温板残料在N2保护下以10℃/min 的升温速率升温到800℃, 在800℃下炭化30 min, 自然冷却至室温获得炭粉; 炭粉用含有4 倍当量的KOH 溶液(0.1 g/mL)浸渍8 h, 加热除去水后转至活化炉中, N2保护下以10℃/min 的升温速率升温到800℃活化60 min, 自然降温到室温; 用5%的盐酸和水清洗至pH 值为中性; 120℃干燥恒重。本工艺制备的活性炭: 碘值2300.27 mg/g, 比表面积1293.45 m2g, 平均孔径2.4 nm, 主要由微孔和偏小中孔组成。
Activated carbons are prepared from the external wall insulation board residual material by the alkali activation method. The performance of the activated carbon is characterized by the FT-IR spectroscopy, the X-ray diffraction, the BET specific surface area, the pore size distribution and the iodine adsorption value. The external wall insulation board is heated from the room temperature to 800℃ at the rate of 10℃/min under the atmosphere of nitrogen and maintains for 30 min. Then it cools to the ambient temperature to obtain charcoal powder. At the ratio of 4∶1(alkali/carbon), the charcoal powder is impregnated for 8 h with 0.1 g/mL KOH solution and is transferred to the activation furnace after being heated to remove water. The charcoal powder is heated from the room temperature to 800℃ at the rate of 10℃/min under the atmosphere of nitrogen, is activated for 60 min, naturally cools down to the room temperature, is washed with 5% hydrochloric acid and water to neutralize, and then is dried to a state of constant weight at 120℃. In the process, the index parameters of the activated carbon are found to be as follows: The iodine value is 2300.27 mg/g, the specific surface area is 1293.45 m2g, the average pore size is 2.4 nm, which is mainly composed of micro pores and small middle pores.
[1] Labus K, Gryglewicz S, Machnikowski J. Granular KOH-activated carbons from coal-based cokes and their CO2adsorption capacity[J]. Fuel, 2014, 118: 9-15.
[2] 詹旭, 邹路易, 邵帅, 等. 活性炭对挥发酚的吸附特性[J]. 科技导报, 2010,28(24): 44-47. Zhan Xu, Zou Luyi, Shao Shuai, et al. Absorption characteristics of activated carbon on volatile phenol[J]. Science & Technology Review, 2010, 28(24): 44-47.
[3] Zhang H, Chen J, Guo S. Preparation of natural gas adsorbents from high-sulfur petroleum coke[J]. Fuel, 2008, 87(3): 304-311.
[4] 邢新艳, 樊广燕, 赵东方, 等. 活性炭负载TiO2复合光催化剂的光催化活性研究[J]. 化工新型材料, 2014,42(9): 112-118. Xing Xinyan, Fan Guangyan, Zhao Dongfang, et al. Study on photocatalytic activity of activated carbon supported Tio2 composite photocatalysts[J]. New Chemical Materials, 2014, 42(9): 112-118.
[5] 李江, 赵乃勤, 郭新权, 等. 利用除尘灰制备颗粒活性炭的实验研究[J]. 炭素技术, 2004,23(5): 6-11. Li Jiang, Zhao Naiqin, Guo Xinquan, et al. Preparation of granular activated carbon from fly ash[J]. Carbon Techniques, 2004, 23(5): 6-11.
[6] Small C C, Hashisho Z, Ulrich A C. Preparation and characterization of activated carbon from oil sands coke[J]. Fuel, 2012, 92(1): 69-76.
[7] 柯义虎, 杨二桃, 刘欣, 等. 用废弃印刷线路板非金属组分分离物制备多孔炭[J]. 新型炭材料, 2013, 28(2): 108-114. Ke Yihu, Yang Ertao, Liu Xin, et al. Preparation of porous carbons from non-metallic fractions of waste printed circuit boards by chemical and physical activation[J]. New Carbon Materials, 2013, 28(2): 108-114.
[8] 牛耀岚. 废弃麻纺品制备活性炭及其应用研究[D]. 上海: 东华大学, 2009. Niu Yaolan. Studies on preparation and application of activated carbon from disposable linen fabric[D]. Shanghai: Donghua University, 2009.
[9] 艾红梅, 卢普光. 墙体保温技术的研究与发展(一)[J]. 建筑技术与应用, 2011(1): 2-5. Ai Hongmei, Lu Puguang. Research and development od wall insulation technology(1) [J]. Research & Application of Building Materials, 2011 (1): 2-5.
[10] Ahmadpour A, Do D D. The preparation of activated carbon from macadamia nutshell by chemical activation[J]. Carbon, 1997, 35(12): 1723-1732.
[11] 王秀芳, 田勇, 张会平. 高比表面积煤质活性炭的制备与活化机理[J]. 化工学报, 2009, 60(3): 733-737. Wang Xiufang, Tian Yong, Zhang Huiping. Preparation and activation mechanism of high specific surface area coal-based activated carbon[J]. Journal of Chemical Industry and Engineering, 2009, 60(3): 733-737.
[12] Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37(11): 1785-1796.
[13] Ma C, Song Y Shi J, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon, 2013, 51: 290-300.