研究论文

龙虎泡油田微生物驱油评价实验

  • 毕永强 ,
  • 伊丽娜 ,
  • 齐义彬 ,
  • 王天源 ,
  • 黄立信 ,
  • 俞理
展开
  • 1. 中国科学院渗流流体力学研究所, 廊坊065007;
    2. 中国科学院大学物理科学学院, 北京100049
    3. 中国石油勘探开发研究院廊坊分院, 廊坊065007
毕永强, 博士研究生, 研究方向为微生物采油, 电子信箱:bicheng929@163.com

收稿日期: 2015-02-09

  修回日期: 2015-03-18

  网络出版日期: 2015-05-15

基金资助

国家高技术研究发展计划(863计划)项目(2013AA064402)

Experimental evaluation of the microbial oil displacement in Longhupao oilfield

  • BI Yongqiang ,
  • YI Lina ,
  • QI Yibin ,
  • WANG Tianyuan ,
  • HUANG Lixin ,
  • YU Li
Expand
  • 1. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
    2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Langfang Branch of Research Institute of Petroleum Exploration and Development, Langfang 065007, China

Received date: 2015-02-09

  Revised date: 2015-03-18

  Online published: 2015-05-15

摘要

为了在大庆龙虎泡油田应用微生物采油技术, 进行室内评价实验。从龙虎泡油田地层水中筛选到一株内源菌DH8, 经鉴定为Geobacillusstearothermophilus, 另外从菌种库中挑选一株适合该油藏条件生长的外源菌SL21, 经鉴定为Bacillus licheniformis。室内对DH8 和SL21 的乳化性能、降解能力和驱油效率进行了评价。研究发现, 菌株DH8 和SL21 发酵液的比毛管数分别为0.0239 s/m 和0.0332 s/m; 菌株DH8 和SL21 分别使原油黏度降低19.02%和26.08%; 气相色谱分析表明菌株DH8 主要降解C13~C27内正构烷烃, 而菌株SL21 主要降解C19~C37内正构烷烃, 经DH8 和SL21 降解后, C13之前烷烃含量占比分别增加了5.33%和11.00%; 物模实验表明, 菌株SL21 和菌株DH8 的驱油效率分别为7.11%和5.50%。综合分析得出外源菌SL21 的各项驱油性能指标均优于内源菌DH8。

本文引用格式

毕永强 , 伊丽娜 , 齐义彬 , 王天源 , 黄立信 , 俞理 . 龙虎泡油田微生物驱油评价实验[J]. 科技导报, 2015 , 33(9) : 50 -53 . DOI: 10.3981/j.issn.1000-7857.2015.09.008

Abstract

In order to apply the technology of the microbial enhanced oil recovery in the Longhupao oilfield of Daqing, a series of experiments are conducted in our laboratory. Two strains of microbes are considered in the experiment. The endogenous microbe DH8 is screened from the Longhupao oilfield formation water, identified as the Geobacillusstearothermophilus; the inoculating microbe SL21 is selected from the strain library, identified as the Bacillus licheniformis. Their emulsification property, degradation ability and oil displacement efficiency are studied. It is shown that the specific capillary numbers of the DH8 and the SL21 are 0.0239 s/m and 0.0332 s/m, respectively; the viscosity reductions of the oil are 19.02% and 26.08% after the applications of the DH8 and the SL21. The linear Alkanes in the C13~C27 are mainly degraded by the DH8, and the linear Alkanes in the C19~C37 are mainly degraded by the SL21, but the short-chain n-alkanes before the C13 are both increased by 5.33% and 11.00% after the applications of the fDH8 and SL21. The physical flooding simulation experiments show that the oil displacement efficiency of the SL21 and the DH8 are 7.11% and 5.5%, respectively. Therefore, the oil displacment performance of the SL21 is better than that of the DH8.

参考文献

[1] 赵寿增. 微生物采油技术[J]. 油气采收率技术, 1996, 3(1): 14-22. Zhao Shouzeng. Microbial enhanced oil recovery (MEOR) technology[J]. Oil & Gas Recovery Technology, 1996, 3(1): 14-22.
[2] Gullapalli I L, Bae J H, Hejl K, et al. Laboratory design and field implementation of microbial profile modification process[J]. SPE Reservoir Evaluation & Engineering, 2000, 3(1): 42-49.
[3] 高配科, 马挺, 赵玲侠, 等. 胜利油田沾3 区块内源微生物激活剂的筛选, 优化及效果评价[J]. 化工学报, 2011, 62(7): 2005-2012. Gao Peike, Ma Ting, Zhao Lingxia, et al. Screening, optimizationand evaluation of indigenous microorganismactivation system in Zhan3 block, Shengli Oilfield[J]. Journal of Chemical Industry and Engineering, 2011, 62(7): 2005-2012.
[4] 谢昆, 夏文杰, 董汉平, 等. 内源微生物激活体系在多孔介质中的吸附规律研究[J]. 科学技术与工程, 2012, 12(29): 7510-7514. Xie Kun, Xia Wenjie, Dong Hanping, et al. Adsorption mechanism of indigenous microbial activatorin porous medium[J]. Science Technology and Engineering, 2012, 12(29): 7510-7514.
[5] 郭英. 国内外源微生物驱矿场试验状况分析[J]. 科技导报, 2011, 29 (22): 51-54. Guo Ying. Exogenous microbial enhanced water-flooding plot tests in China[J]. Science & Technology Review, 2011, 29(22): 51-54.
[6] 高配科, 马挺, 刘如林. 油藏微生物的代谢特征和生态结构调控[J]. 微生物学报, 2011, 51(6): 711-717. Gao Peike, Ma Ting, Liu Rulin. Microbial metabolic characteristics and ecological controlling in petroleum reservoir[J]. Acta Microbiologica Sinica, 2011, 51(6): 711-717.
[7] 雷光伦, 郭云尧, 郑家朋, 等. 高温微生物提高采收率实验研究[J]. 油气地质与采收率, 2002, 9(4): 15-16. Lei Guanglun, Guo Yunyao, Zheng Jiapeng, et al. Laboratory research of improving oil recovery by microbeat high temperature[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(4): 15-16.
[8] 乐建君, 陈星宏, 王蕊, 等. 敖古拉中高温油田微生物驱油可行性分析[J]. 科学技术与工程, 2013, 20(34): 9158-9162. Le Jianjun, Chen Xinghong, Wang Rui, et al. Feasibility analysis of microbial enhanced oil recovery of Augulamid-high temperature oil field [J]. Science Technology and Engineering, 2013, 20(34): 9158-9162.
[9] 张明露, 马挺, 李国强, 等. 一株耐热石油烃降解菌的细胞疏水性及乳化、润湿作用研究[J]. 微生物学通报, 2008, 35(9): 1348-1352. Zhang Minglu, Ma Ting, Li Guoqiang, et al. Cell-surface hydrophobicity, emulsification and wetting property of a high temperature hydrocarbondegrading strain[J]. Microbiology China,2008, 35(9): 1348-1352.
[10] 包木太, 袁书文, 宋智勇, 等. 不同碳源激活剂对胜利油田中一区油藏内源菌激活效果评价[J]. 化工学报, 2011, 62(3): 786-791. Bao Mutai, Yuan Shuwen, Song Zhiyong, et al. Evaluation on effects of different carbon source on activatingindigenous bacteria in Zhongyi block of Shengli Oilfield[J]. Journal of Chemical Industry and Engineering, 2011, 62(3): 786-791.
[11] 吴超, 黄立信, 俞理, 等. 本源微生物激活体系筛选与优化方法研究[J]. 石油天然气学报, 2008, 29(6): 103-107. Wu Chao, Huang Lixin, Yu Li, et al. Selection of indigenous microorganism activation system and its optimization[J]. Journal of Oil and Gas Technology, 2008, 29(6): 103-107.
[12] 郑承纲, 俞理, 吴庆红, 等. 一株烃降解菌Rhodococcus ruber Z25研 究[J]. 深圳大学学报: 理工版, 2009, 26(3): 234-239. Zheng Chenggang, Yu Li, Wu Qinghong, et al. Rhodococcus ruber Z25, a hydrocarbon-degradating strain[J]. Journal of Shenzhen University Science and Engineering, 2009, 26(3): 234-239.
[13] 齐义彬, 曹美娜, 黄立信, 等. 嗜热解烃菌的组合降黏降解机理[J].科学技术与工程, 2014, 14(24): 18-22. Qi Yibin, Cao Meina, Huang Lixin, et al. Mechanism of crude oil viscosity reduction and degradat ion by the rmophilic hydrocarbondegr ading bacteria combination[J]. Science Technology and Engineering, 2014, 14(24): 18-22.
[14] 夏文杰, 董汉平, 俞理, 等. 铜绿假单胞菌WJ-1 降解原油特性[J]. 化工学报, 2011, 62(7): 2013-2019. Xia Wenjie, Dong Hanping, Yu Li, et al. Oil degradation characteristics of Pseudomonas aeruginosa WJ-1[J]. Journal of Chemical Industry and Engineering, 2011, 62(7): 2013-2019.
[15] 高配科, 王燕森, 张宏祚, 等. 两株嗜热解烃菌对原油的降黏机制[J]. 化工学报, 2013, 64(11): 4240-4245. Gao Peike, Wang Yansen, Zhang Hongzuo, et al. Mechanism of crude oil viscosity reduction by two thermophilic hydrocarbon-degrading bacteria[J]. Journal of Chemical Industry and Engineering, 2013, 64 (11): 4240-4245.
[16] 齐义彬, 王大威, 吴萌萌, 等. 胶质降解和生物乳化在稠油降黏中的作用[J]. 石油学报, 2012, 33(4): 670-675. Qi Yibin, Wang Dawei, Wu Mengmeng, et al. Effectofresin degradation and biological emusification on the viscosity break of heavy oils[J]. Acta Petrolei Sinica, 2012, 33(4): 670-675.
[17] 刘涛, 宋智勇, 曹功泽, 等. 中一区Ng3区块微生物驱油物模实验研究[J]. 应用与环境生物学报, 2013, 19(2): 335-341. Liu Tao, Song Zhiyong, Cao Gongze, et al. Laboratory study on enhancing recovery by microbial oil displacement inboratory study on enhancing recovery by microbial oil displacement in Ng3[J]. Chinese Journal of Applied & Environmental Biology, 2013, 19(2): 335-341.
[18] 于登飞, 俞理, 黄立信, 等. 不同培养时间微生物驱油效率研究[J]. 科学技术与工程, 2012, 12(23): 5735-5738. Yu Dengfei, Yu Li, Huang Lixin, et al. Experimental study of microbial enhanced oilrecovery in different incubation time[J]. Science Technology and Engineering, 2012, 12(23): 5735-5738.
文章导航

/