专题论文

“材料基因组”方法加速热电材料性能优化

  • 史迅 ,
  • 杨炯 ,
  • 陈立东 ,
  • 杨继辉 ,
  • 张文清
展开
  • 1. 中国科学院上海硅酸盐研究所;高性能陶瓷和超微结构国家重点实验室, 上海200050;
    2. 美国华盛顿大学材料科学与工程系, 西雅图98195;
    3. 上海大学材料基因组工程研究院, 上海200444
史迅,研究员,研究方向为热电材料,电子信箱:xshi@mail.sic.ac.cn

收稿日期: 2015-04-10

  修回日期: 2015-04-20

  网络出版日期: 2015-05-26

基金资助

国家自然科学基金重点项目(11234012);上海市科学技术委员会科研项目(14DZ2261203)

Materials-genome approach speeds up optimization of thermoelectric materials

  • SHI Xun ,
  • YANG Jiong ,
  • CHEN Lidong ,
  • YANG Jihui ,
  • ZHANG Wenqing
Expand
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    2. Materials Science and Engineering Department, University of Washington, Seattle 98195, USA;
    3. Materials Genome Institute, Shanghai University, Shanghai 200444, China

Received date: 2015-04-10

  Revised date: 2015-04-20

  Online published: 2015-05-26

摘要

通过材料计算、数据库技术的整合与协同,可以快速甄别决定材料性能的基本关键因素,将这种方法用于材料的性能优化和新材料的设计,可以实现科学化"系统寻优"的材料基因组方法,显著加快热电材料的设计与性能优化。以填充方钴矿材料和类金刚石结构化合物为例,从电子和声子优化的不同角度,采用材料基因组方法从成百上千种可能性中快速筛选和制备出高性能热电材料,展示了材料基因组方法可显著加速热电材料研究的能力。

本文引用格式

史迅 , 杨炯 , 陈立东 , 杨继辉 , 张文清 . “材料基因组”方法加速热电材料性能优化[J]. 科技导报, 2015 , 33(10) : 60 -63 . DOI: 10.3981/j.issn.1000-7857.2015.10.005

Abstract

The method of Materials Genome Initiative greatly speeds up the optimization of thermoelectric materials. Based on theoretical calculations and materials' database, this approach rapidly finds out the important factors that affect materials' properties, which can be used in the study of current materials by providing helpful directions and guidance. In this work, filled skutterudites and diamond-like compounds were selected as two examples to demonstrate how Materials Genome Initiative speeds up the optimization of thermoelectric properties. Starting from perspectivesof electron and phonon transport, this method can easily find out a few best chemical compositions from hundreds (or thousands) of possibilities to realize high thermoelectric performance. This work demonstrates that thermoelectric material is a typical example that can use the materials genome approachto speed up experimental study.

参考文献

[1] 史迅, 席丽丽, 杨炯, 等. 热电材料研究中的基础物理问题[J]. 物理, 2011, 40(11): 710-718. Shi Xun, Xi Lili, Yang Jiong, et al. Basic physics in thermoelectric[J]. Physics, 2011, 40(11): 710-718.
[2] Goldsmid H J. Electronic refrigeration[M]. London: Pion Limited, 1986.
[3] Yang J, Li H, Wu T, et al. Evaluation of Half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties[J]. Advanced Functional Materials, 2008, 18(19): 2880-2888.
[4] 席丽丽, 杨炯, 史迅, 等. 填充方钴矿热电材料: 从单填到多填[J]. 中国科学: 物理学力学天文学, 2011, 41(6): 706-728. Xi Lili, Yang Jiong, Shi Xun, et al. Filled skutterudites: From single to multiple filling[J]. Scientia Sinica Physica, Mechanica & Astronomica, Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(6): 706- 728.
[5] Shi X, Zhang W, Chen L D, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites[J]. Physical Review Letters, 2005, 95(18): 185503.
[6] Pei Y Z, Chen L D, Zhang W, et al. Synthesis and thermoelectric properties of KyCo4Sb12[J]. Applied Physics Letters, 2006, 89(22): 221107.
[7] Pei Y Z, Yang J, Chen L D, et al. Improving thermoelectric performance of caged compounds through light-element filling[J]. Applied Physics Letters, 2009, 95(4): 042101.
[8] Yang J, Zhang W, Bai S Q, et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr) [J]. Applied Physics Letters, 2007, 90(19):192111.
[9] Shi X, Bai S Q, Xi L, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites[J]. Journal of Material Research, 2011, 26(15): 1745-1754.
[10] Xi L, Yang J, Zhang W, et al. Anomalous dual- element filling in partially filled skutterudites[J]. Journal of the American Chemical Society, 2009, 131(15): 5560-5563.
[11] Shi X, Kong H, Li C P, et al. Low thermal conductivity and high thermoelectric figure of meritin n- type BaxYbyCo4Sb12 double- filled skutterudites[J]. Applied Physics Letters, 2008, 92(18): 182101.
[12] Bai S Q, Pei Y Z, Chen L D, et al. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12[J]. Acta Materialia, 2009, 57(11): 3135-3139.
[13] Shi X, Yang J, Salvador J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20): 7837-7846.
[14] Liu R, Xi L, Liu H, et al. Ternary compound CuInTe2: A promising thermoelectric material with diamond-like structure[J]. Chemical Communications, 2012, 48(32): 3818-3820.
[15] Zhang J, Liu R, Cheng N, et al. High- performance pseudocubic thermoelectric materials from non- cubic chalcopyrite compounds[J]. Advanced Materials, 2014, 26(23): 3848-3853.
[16] Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials[J]. Science, 1996, 272(5266): 1325-1328.
[17] Plirdpring T, Kurosaki K, Kosuga A, et al. Chalcopyrite CuGaTe2: A high- efficiency bulk thermoelectric material[J]. Advanced Materials, 2012, 24(27): 3622-3626.
文章导航

/