专题论文

组合材料芯片技术在新材料研发中的应用

  • 项晓东 ,
  • 汪洪 ,
  • 向勇 ,
  • 闫宗楷
展开
  • 1. 中国建筑材料科学研究总院, 北京100024;
    2. 电子科技大学能源科学与工程学院, 成都611731
项晓东,教授,研究方向为高通量组合材料实验方法、新材料、新能源,电子信箱:xdxiang@e-cubetech.com

收稿日期: 2015-04-02

  修回日期: 2015-04-28

  网络出版日期: 2015-05-26

基金资助

国家高技术研究发展计划(863计划)项目(SS2015AA034204)

Applications of combinatorial material chip technology in research and development of new materials

  • XIANG Xiaodong ,
  • WANG Hong ,
  • XIANG Yong ,
  • YAN Zongkai
Expand
  • 1. China Building Materials Academy, Beijing 100024, China;
    2. School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received date: 2015-04-02

  Revised date: 2015-04-28

  Online published: 2015-05-26

摘要

组合材料芯片是高通量材料实验技术的重要组成部分,可实现在一块较小的基底上,通过精妙设计,以任意元素为基本单元,组合集成多达10~108种不同成分、结构、物相等材料样品库,并利用高通量表征方法快速获得材料的成分、结构、性能等信息,以实验通量的大幅度提高带来研究效率的根本转变,实现材料搜索的"多、快、好、省"。组合材料芯片技术经历了20 年的发展与完善,已形成一系列较为成熟的材料制备技术与表征方法。本文列举多年来涉及微电子材料、磁性材料、光电材料、能源材料、介电材料、催化材料、合金材料等15 个领域中较为成功的应用案例,以展示组合材料芯片技术在加速新材料发现、材料和器件性能优化、以及基础物理研究中的突出作用及效果。

本文引用格式

项晓东 , 汪洪 , 向勇 , 闫宗楷 . 组合材料芯片技术在新材料研发中的应用[J]. 科技导报, 2015 , 33(10) : 64 -78 . DOI: 10.3981/j.issn.1000-7857.2015.10.006

Abstract

Combinatorial material chip technology is a key element of the high-throughput materials experimentation which enables fulfillment of the Materials Genome Initiative. A typical combinatorial materials library contains 10 to 108 samples on a single substrate, and their compositions, structures, and properties are rapidly characterized. Over the past two decades, much progress has been made in combinatorial materials synthesis and characterization techniques. Combinatorial materials screening has been widely applied in almost all fields of materials research. In this article, examples were chosen from 15 categories of materials, such as electronic materials, magnetic materials, photonic materials, optical materials, energy materials, dielectric materials, catalysts, and alloys, to demonstrate the effectiveness and efficiency of the combinatorial methodology in new materials discovery, materials and devices optimization, as well as fundamental physics research.

参考文献

[1] Hanak J J. Multiple- sample- concept in materials research synthesis, compositional analysis and testing of entire multicomponet systems[J]. Journal of Materials Science, 1970, 5(11): 964-971.
[2] Xiang X D, Sun X, Briceño G, et al. A combinatorial approach to materials discovery[J]. Science, 1995, 268(5218): 1738-1740.
[3] Green M L, Takeuchi I, Hattrick- Simpers J R. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials[J]. Journal of Applied Physics, 2013, 113 (23): 231101.
[4] Young K Y, Xiang X D. Combinatorial material preparation[J]. Journal of Physics: Condensed Matter, 2002, 14: R49-R78.
[5] Amis E J, Xiang X D, Zhao J C. Combinatorial material science: What's new since edison?[J]. MRS Bulletin, 2002, 8: 297-300.
[6] Intermolecular, Applications [EB/OL]. (2011-08-11)[2015-01-20].http:// www.intermolecular.com/.
[7] 王海舟, 汪洪, 丁洪, 等. 高通量材料实验与表征[J]. 科技导报, 2015, 33 (10): 31-49. Wang Haizhou, Wang Hong, Ding Hong, et al. High throughput experimentation for materials genome[J]. Science & Technology Review, 2005, 33(10): 31-49.
[8] Beenakker C W J. Random- matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69(3): 731-808.
[9] Blatter G, Feigel'man M V, Geshkenbein V B, et al. Vortices in hightemperature superconductors[J]. Reviews of Modern Physics 1994, 66(4): 1125-388.
[10] Dagotto E. Correlated electrons in high-temperature superconductors[J]. Reviews of Modern Physics, 1994, 66(3): 763-840.
[11] Damascelli A, Hussain Z, Shen Z X. Angle- resolved photoemission studies of the cuprate superconductors[J]. Reviews of Modern Physics, 2003, 75(2): 473-541.
[12] LedermanD,VierDC,MendozaD,etal.Detectionofnew superconductors using phase-spread alloy-films[J]. Applied Physics Letters, 1995, 66 (26): 3677-3679.
[13] Knigge B, Hoffmann A, Lederman D, et al. Search for new superconductors in the Y-Ni-B-C system[J]. Journal of Applied Physics, 1997, 81(5): 2291-2295.
[14] Pessaud S, Gervais F, Champeaux C, et al. Combinatorial solid state chemistry by multitarget laser ablation: A way for the elaboration of new superconducting cuprates thin films[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 1999, 60 (3): 205-211.
[15] Logvenov G, Sveklo I, Bozovic I. Combinatorial molecular beam epitaxy of La2- xSrxCuO4 +δ [J]. Physica C: Superconductivity and Its Applications, 2007, 460: 416-419.
[16] Wong-Ng W, Otani M, Levin I, et al. A phase relation study of Ba-YCu- O coated- conductor films using the combinatorial approach[J]. Applied Physics Letters, 2009, 94(17): 171910.
[17] Saadat M, George A E, Hewitt K C. Densely mapping the phase diagram of cuprate superconductors using a spatial composition spread approach[J]. Physica C: Superconductivity and Its Applications, 2010, 470: S59- S61.
[18] Clayhold J A, Kerns B M, Schroer M D, et al. Combinatorial measurements of Hall effect and resistivity in oxide films[J]. Review of Scientific Instruments, 2008, 79(3): 033908.
[19] Hewitt K C, Casey P A, Sanderson R J, et al. High-throughput resistivity apparatus for thin-film combinatorial libraries[J]. Review of Scientific Instruments, 2005, 76(9): 093906.
[20] Jin S, O'Bryan H M, Tiefel T H, et al. Large magnetoresistance in polycrystalline La-Y-Ca-Mn-O[J]. Applied Physics Letters, 1995, 66 (3): 382.
[21] Jin S, Tiefel T H, McCormack M, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J]. Science, 1994, 264(5157): 413-415.
[22] Xiong G C, Li Q, Ju H L, et al. Giant magnetoresistance in epitaxial Nd0.7Sr0.3MnO3-δ thin films[J]. Applied Physics Letters, 1995, 66(11): 1427.
[23] Briceño G, Chang H, Sun X D, et al. A class of cobalt oxide magnetoresistance materials disovered with combinatorial synthesis[J]. Science, 1995, 270: 273-275.
[24] Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases[J]. Reviews of Modern Physics, 2008, 80(3): 885-964.
[25] Mitschke U, Bauerle P. The electroluminescence of organic materials[J]. Journal of Materials Chemistry, 2000, 10(7): 1471-1507.
[26] Trindade T, O'Brien P, Pickett N L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives[J]. Chemistry of Materials, 2001, 13(11): 3843-3858.
[27] YeS,XiaoF,PanYX, etal.Phosphorsinphosphor-convertedwhitelightemitting diodes: Recent advances in materials, techniques and properties[J]. Materials Science and Engineering: Reports, 2010, 71(1): 1-34.
[28] Sun X D, Wang K A, Yoo Y, et al. Solution- phase synthesis of luminescent materials libraries[J]. Advanced Materials, 1997, 9(13): 1046-1049.
[29] Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library[J]. Science, 1998, 279 (5357): 1712-1714.
[30] Sun X D, Xiang X D. New phosphor (Gd2- xZnx) O3- δ : Eu3 + with high luminescent efficiency and superior chromaticity[J]. Applied Physics Letters, 1998, 72(5): 525-527.
[31] Wang W H, Dong C, Shek C H. Bulk metallic glasses[J]. Materials Science and Engineering: Reports, 2004, 44(2/3): 45-89.
[32] Yavari A R. Materials science: A new order for metallic glasses[J]. Nature, 2006, 439(7075): 405-406.
[33] Yoo Y K, Ohnishi T, Wang G, et al. Continuous mapping of structureproperty relations in Fe1-xNix metallic alloys fabricated by combinatorial synthesis[J]. Intermetallics, 2001, 9(7): 541-545.
[34] Zolotukhin I V, Yu E K. Amorphous metallic alloys[J]. Soviet Physics Uspekhi, 1990, 33(9): 720.
[35] Yoo Y K, Xue Q, Chu Y S, et al. Identification of amorphous phases in the Fe- Ni- Co ternary alloy system using continuous phase diagram material chips[J]. Intermetallics, 2006, 14(3): 241-247.
[36] Xiang X D. High throughput synthesis and screening for functional materials[J]. Applied Surface Science, 2004, 223(1-3): 54-61.
[37] Gregoire J M, McCluskey P J, Dale D, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses[J]. Scripta Materialia, 2012, 66(3/4): 178-181.
[38] McCluskey P J, Vlassak J J. Combinatorial nanocalorimetry[J]. Journal of Materials Research, 2011, 25(11): 2086-2100.
[39] Lai S. Current status of the phase change memory and its future[C]//49th IEEE International Electron Device Meeting. Washington DC, USA: Technical Digest, 2003: 1011-1014.
[40] Wong H S P. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12): 2201-2227.
[41] 项晓东. 原位实时高通量组合材料实验技术[C]//2014新材料国际发展趋势高层论坛. 西安: 2014新材料国际发展趋势高层论坛组委会, 2014: 61-70. Xiang Xiaodong. High throughput in-situ combinatorial materials synthesis and characterization[C]//2014 International Forum of Advanced materials. Xi'an: The organizing committee of 2014 International Forum of Advanced materials, 2014: 61-70.
[42] Siegel J, Afonso C N, Solis J. Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses[J]. Applied Physics Letters, 1999, 75(20): 3102-3104.
[43] Borg H J, van Schijndel M, Rijpers J C N, et al. Phase-change media for high-numerical-aperture and blue-wavelength recording[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40(3B): 1592-1597.
[44] Kooi B J, De Hosson J T M. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage[J]. Journal of Applied Physics, 2004, 95(9): 4714-4721.
[45] Kooi B J, Groot W M G, De Hosson J T M. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5[J]. Journal of Applied Physics, 2004, 95(3): 924-932.
[46] Nirschl T. Write strategies for 2 and 4-bit multi-level phase-change memory[C]//53th IEEE International Electron Device Meeting. Washington DC, USA: Institute of Electrical and Electronics Engineers, 2007: 461-464.
[47] Chang K S, Green M L, Suehle J, et al. Combinatorial study of Ni-Ti-Pt ternary metal gate electrodes on HfO2 for the advanced gate stack[J]. Applied Physics Letters, 2006, 89(14): 142108.
[48] Ahmet P, Nagata T, Kukuruznyak D, et al. Composition spread metal thin film fabrication technique based on ion beam sputter deposition[J]. Applied Surface Science, 2006, 252(7): 2472-2476.
[49] Ahmet P, Yoo Y Z, Hasegawa K, et al. Fabrication of three-component composition spread thin film with controlled composition and thickness[J]. Applied Physics A, 2004, 79(4-6): 837-839.
[50] Ohmori K. Wide controllability of flatband voltage by tuning crystalline microstructures in metal gate electrodes[C]//53th IEEE International Electron Device Meeting. Washington DC, USA: Institute of Electrical and Electronics Engineers, 2007: 345-348.
[51] Intel. High- k quantum mechanical tunneling and gate leakage[EB/ OL]. (2009-08-21)[2015-01-20] http://www.intel.com/pressroom/kits/ advancedtech/doodle/ref_HiK-MG/high-k.htm.
[52] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35.
[53] Liu H, Song C, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources, 2006, 155(2): 95-110.
[54] Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53.
[55] Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. Journal of Electroanalytical Chemistry, 1999, 461 (1/2): 14-31.
[56] Reddington E, Sapienza A, Gurau B, et al. Combinatorial electrochemistry: A highly prallel, optical screening method for discovery of better electrocatalysts[J]. Science, 1998, 280(5370): 1735-1737.
[57] Cooper J S, McGinn P J. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode[J]. Journal of Power Sources, 2006, 163(1): 330-338.
[58] Gregoire J M, van Dover R B, Jin J, et al. Getter sputtering system for high- throughput fabrication of composition spreads[J]. The Review of Scientific Instruments, 2007, 78(7): 072212.
[59] Jambunathan K, Jayaraman S, Hillier A C. A multielectrode electrochemical and scanning differential electrochemical mass spectrometry study of methanol oxidation on electrodeposited PtxRuy[J]. Langmuir, 2004, 20(5): 1856-1863.
[60] Imada M, Fujimori A, Tokura Y. Metal-insulator transitions[J]. Reviews of Modern Physics, 1998, 70(4): 1039-1263.
[61] McDonough W F, Sun S S. The composition of the earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
[62] Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358.
[63] SuryanarayanaC.Mechanicalalloyingandmilling[J].Progressin Materials Science, 2001, 46(1/2): 1-184.
[64] Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis[J]. Chemical Reviews, 1999, 99(8): 2071-2084.
[65] Han S M, Shah R, Banerjee R, et al. Combinatorial studies of mechanical properties of Ti-Al thin films using nanoindentation[J]. Acta Materialia, 2005, 53(7): 2059-2067.
[66] Knauss L A, Pond J M, Horwitz J S, et al. The effect of annealing on the structure and dielectric properties of BaxSr1-xTiO3 ferroelectric thin films[J]. Applied Physics Letters, 1996, 69(1): 25-27.
[67] Takeuchi I, Chang H, Gao C, et al. Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries[J]. Applied Physics Letters, 1998, 73(7): 894-896.
[68] Kingon A I, Streiffer S K, Basceri C, et al. High-permittivity perovskite thin films for dynamic random-access memories[J]. MRS Bulletin, 1996, 21(7): 46-52.
[69] Kotecki D E. A review of high dielectric materials for DRAM capacitors[J]. Integrated Ferroelectrics, 1997, 16(1-4): 1-19.
[70] Copel M, Duncombe P R, Neumayer D A, et al. Metallization induced band bending of SrTiO3 (100) and Ba0.7Sr0.3TiO3[J]. Applied Physics Letters, 1997, 70(24): 3227-3229.
[71] Zafar S, Jones R E, Chu P, et al. Investigation of bulk and interfacial properties of Ba0.5Sr0.5TiO3 thin film capacitors[J]. Applied Physics Letters, 1998, 72(22): 2820-2822.
[72] Takeuchi I, Chang K, Sharma R P, et al. Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method[J]. Journal of Applied Physics, 2001, 90(5): 2474-2478.
[73] Chang H, Gao C, Takeuchi I, et al. Combinatorial synthesis and high throughput evaluation of ferroelectric/ dielectric thin- film libraries for microwaveapplications[J]. Applied Physics Letters, 1998, 72(18): 2185- 2187.
[74] Chang H, Takeuchi I, Xiang X D. A low-loss composition region identified from a thin-film composition[J]. Applied Physics Letters, 1999, 74(8): 1165-1167.
[75] Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin- film solar cells[J]. Progress in Photovoltaics: Research and Applications, 2003, 11(4): 225-230.
[76] Kessler F, Rudmann D. Technological aspects of flexible CIGS solar cells and modules[J]. Solar Energy, 2004, 77(6): 685-695.
[77] Romeo A, Terheggen M, Abou-Ras D, et al. Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(2/3): 93-111.
[78] Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/ CuInGaSe2 solar cell with 81.2% fill factor[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 235-239.
[79] Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625- 1636.
[80] Brill G, Chen Y, Amirtharaj P M, et al. Molecular beam epitaxial growth and characterization of Cd-based II-VI wide-bandgap compounds on Si substrates[J]. Journal of Electronic Materials, 2005, 34(5): 655-661.
[81] Eid J, Liang H, Gereige I, et al. Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells[J]. Progress in Photovoltaics: Research and Applications, 2013, DOI: 10.1002/pip.2419.
[82] MaoSS.Highthroughputgrowthandcharacterizationofthinfilm materials[J]. Journal of Crystal Growth, 2013, 379: 123-130.
[83] Granqvist C G, Lansåker P C, Mlyuka N R, et al. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices[J]. Solar Energy Materials and Solar Cells, 2009, 93(12): 2032-2039.
[84] Lewis K L, Pitt A M, Wyatt-Davies T, et al. Thin film thermochromic materials for non- linear optical devices[J]. MRS Online Proceedings Library, 1994: 374.
[85] Sella C, Maaza M, Nemraoui O, et al. Preparation, characterization and properties of sputtered electrochromic and thermochromic devices[J]. Surface and Coatings Technology, 1998, 98(1-3): 1477-1482.
[86] Kamalisarvestani M, Saidur R, Mekhilef S, et al. Performance, materials and coating technologies of thermochromic thin films on smart windows[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 353-364.
[87] Jin P, Xu G, Tazawa M, et al. Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings[J]. Applied Physics A, 2003, 77(3/4): 455-459.
[88] Babulanam S M, Eriksson T S, Niklasson G A, et al. Thermochromic VO2 films for energy- efficient windows[J]. Materials and Optics for Solar Energy Conversion and Advanced Lightning Technology, 1987, 692: 8- 18.
[89] Kang L, Gao Y, Luo H, et al. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 135-138.
[90] Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance[J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1685-1687.
[91] Bassim N D, Schenck P K, Donev E U, et al. Effects of temperature and oxygen pressure on binary oxide growth using aperture- controlled combinatorial pulsed-laser deposition[J]. Applied Surface Science, 2007, 254: 785-788.
[92] Fujimoto K, Onoda K, Sato M, et al. High-throughput synthesis and evaluation of thermochromic materials by a combinatorial approach[J]. Materials Science and Engineering A, 2008, 475: 52-56.
[93] AricoAS,BruceP,ScrosatiB,etal.Nanostructuredmaterialsfor advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.
[94] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47 (16): 2930-2946.
[95] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[96] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[97] Fleischauer M D, Topple J M, Dahn J R. Combinatorial investigations of Si- M (M=Cr + Ni, Fe, Mn) thin film negative electrode materials[J]. Electrochemical and Solid-State Letters, 2005, 8(2): A137-A140.
[98] Fujimoto K, Kato T, Ito S, et al. Development and application of combinatorial electrostatic atomization system“M- ist Combi”: Highthroughput preparation of electrode materials[J]. Solid State Ionics, 2006, 177(26-32): 2639-2642.
[99] Bottner H, Nurnus J, Gavrikov A, et al. New thermoelectric components using microsystem technologies[J]. Journal of Microelectromechanical Systems, 2004, 13(3): 414-420.
[100] Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
[101] Tritt T M, Subramanian M A. Thermoelectric materials, phenomena, and applications: A bird's eye view[J]. MRS Bulletin, 2006, 31(03): 188-198.
[102] Otani M, Lowhorn N D, Schenck P K, et al. A high- throughput thermoelectric power- factor screening tool for rapid construction of thermoelectric property diagrams[J]. Applied Physics Letters, 2007, 91 (13): 132102.
[103] Funahashi R, Urata S, Kitawaki M. Exploration of n-type oxides by high throughput screening[J]. Applied Surface Science, 2004, 223(1- 3): 44-48.
[104] Funahashi R, Mikami M, Urata S, et al. High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples[J].MeasurementScienceandTechnology,2005,16(1):70-80.
[105] Koida T, Kondo M. Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach[J]. Journal of Applied Physics, 2007, 101(6): 063713.
[106] Koida T, Kondo M. Improved near-infrared transparency in sputtered In2O3-based transparent conductive oxide thin films by Zr-doping[J]. Journal of Applied Physics, 2007, 101(6): 063705.
[107] Heo G S, Matsumoto Y, Gim I G, et al. Deposition of amorphous zinc indium tin oxide and indium tin oxide films on flexible poly(ether sulfone) substrate using RF magnetron co-sputtering system[J]. Japanese Journal of Applied Physics, 2010, 49(3): 035801.
[108] VanHest M, Dabney M S, Perkins J D, et al. Titanium-doped indium oxide: A high-mobility transparent conductor[J]. Applied Physics Letters, 2005, 87(3): 032111.
[109] Böhmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers[J]. The Journal of Chemical Physics, 1993, 99(5): 4201-4209.
[110] Vladimir I A, Aryasetiawan F, Lichtenstein A I. First- principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method[J]. Journal of Physics: Condensed Matter, 1997, 9(4): 767.
[111] Yoo Y K, Duewer F, Yang H, et al. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites[J]. Nature, 2000, 406(6797): 704-708.
[112] Yoo Y K, Duewer F, Fukumura T, et al. Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La1- xCaxMnO3 continuous phase diagram[J]. Physical Review B, 2001, 63(22): 224421.
文章导航

/