专题论文

基于“材料基因组工程”的3种方法在镍基高温合金中的应用

  • 王薪 ,
  • 朱礼龙 ,
  • 方姣 ,
  • 刘军 ,
  • 戚海英 ,
  • 江亮
展开
  • 1. 中南大学粉末冶金国家重点实验室, 长沙410083;
    2. 中南大学材料科学与工程学院, 长沙410083
王薪,博士研究生,研究方向为铸造高温合金,电子信箱:xinwang@csu.edu.cn

收稿日期: 2015-04-02

  修回日期: 2015-04-15

  网络出版日期: 2015-05-26

基金资助

国家高技术研究发展计划(863计划)项目(2012AA03A514);中央高校基本科研业务费专项(2013zzts189)

Applications of "Materials Genome Engineering" based methods in Nickel-based superalloys

  • WANG Xin ,
  • ZHU Lilong ,
  • FANG Jiao ,
  • LIU Jun ,
  • QI Haiying ,
  • JIANG Liang
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. School of Materials Science and Engineering, Central South University, Changsha 410083, China

Received date: 2015-04-02

  Revised date: 2015-04-15

  Online published: 2015-05-26

摘要

"材料基因组工程"强调以产业应用为导向,集成和发展材料的计算工具、试验工具和数据库等核心基础能力,聚焦解决关系国计民生产业应用中材料的关键问题。本文列举3 种基于"材料基因组工程"方法在镍基高温合金中的实际应用,包括高通量合金制备及其关键热力学和动力学数据的高通量采集、显微组织的多尺度和多维度表征、微型试样的力学性能检测。分析表明,定量预测和描述材料成分、工艺、组织和性能关系的计算、表征和数据库技术面临极大挑战,基于"材料基因组工程"的方法将促进镍基高温合金的研发,加快从实验室研究到市场应用的转化。

本文引用格式

王薪 , 朱礼龙 , 方姣 , 刘军 , 戚海英 , 江亮 . 基于“材料基因组工程”的3种方法在镍基高温合金中的应用[J]. 科技导报, 2015 , 33(10) : 79 -86 . DOI: 10.3981/j.issn.1000-7857.2015.10.007

Abstract

"Materials Genome Engineering" is industrial application oriented. Exploring and using materials computational tools, experimental tools and databases, it emphasizes the integration and development of these three key capabilities to solve materials issues critical to national welfare and people's livelihood. This paper presents the applications of several "Materials Genome Engineering" based methods in nickel-based superalloys, namely high-throughput alloy fabrication, high-throughput thermodynamic and kinetic data acquisition, multi- scale and multi- dimension microstructure characterization, and miniature specimen testing. Quantitative predictive and descriptive capabilities to reveal the relationships among material composition, processing, structure, and property will undoubtedly be faced with great challenges, but they will progress steadily in this context. "Materials Genome Engineering" based methods will promote the research and development of nickel-based superalloys, accelerating the transition from laboratory work to industrial application.

参考文献

[1] National Science and Technology. Materials genome initiative for global competitiveness[R]. Washington DC: Office of Science and Technology Policy, 2011.
[2] Office of Science and Technology. Fact Sheet: The materials genome initiative-Three years of progress[R]. Washington DC: Office of Science and Technology Policy, 2014.
[3] Gibbs J W. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces[J]. Transactions of the Connecticut Academy, 1873, 2: 382-404.
[4] Service R F. Materials scientists look to a data-intensive future[J]. Science, 2012, 335(6075): 1434-1435.
[5] Zewail A H. Four-dimensional electron microscopy[J]. Science, 2010, 328 (5975): 187-193.
[6] Committee on Integrated Computational Materials Engineering NRC. Integrated computational materials engineering[M]. National Academies Press, 2008.
[7] Reed R C. The superalloys: Fundamentals and applications[M]. Cambridge University Press, 2006.
[8] Sims C T, Stoloff N S, Hagel W C. Superalloys II[M]. Wiley-Interscience, 1987.
[9] Reed R C, Tao T, Warnken N. Alloys-by-design: Application to Nickelbased single crystal superalloys[J]. Acta Materialia, 2009, 57(19): 5898- 5913.
[10] Cowles B, Backman D, Dutton R. Verification and validation of ICME methods and models for aerospace applications[J]. Integrating Materials and Manufacturing Innovation, 2012, 1(1): 2.
[11] American Society of Mechanical Engineers. V V 10. Guide for verification and validation in computational solid mechanics[S]. New York: American Society of Mechanical Engineers, 2006.
[12] Committee on Benchmarking the Technology and Application of Lightweighting NRC. Application of lightweighting technology to military vehicles, vessels, and aircraft[M]. Washington DC: National Academies Press, 2012.
[13] Zhao J C. Combinatorial approaches as effective tools in the study of phase diagrams and composition- structure- property relationships[J]. Progress in Materials Science, 2006, 51(5): 557-631.
[14] Zhao J C, Zheng X, Cahill D G. High-through put diffusion multiples[J]. Materials Today, 2005, 8(10): 28-37.
[15] Zhao J C. The Diffusion-multiple approach to design alloys[J]. Annual Review of Materials Research, 2005, 35(1): 51-73.
[16] Zhao J C. Reliability of the diffusion- multiple approach for phase diagram mapping[J]. Journal of Materials Science, 2004, 39(12): 3913- 3925.
[17] Zhao J C, Jackson M R, Peluso L A, et al. A diffusion multiple approach for the accelerated design of structural materials[J]. Materials Research Society Bulletin, 2002, 27(4): 324-329.
[18] Zhao J C, Jackson M R, Peluso L A, et al. A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus[J]. Journal of the Minerals Metals and Materials Society, 2002, 54(7): 42-45.
[19] Zhao J C. A combinatorial approach for structural materials[J]. Advanced Engineering Materials, 2001, 3(3): 143-147.
[20] Zhu L L, Jiang L, Zhao J C, et al. Experimental determination of the Ni- Cr-Ru phase diagram and thermodynamic reassessments of the Cr-Ru and Ni-Cr-Ru systems[J]. Intermetallics, in Press.
[21] Zhang Q, Zhao J C. Impurity and interdiffusion coefficients of the Cr-X (X=Co, Fe, Mo, Nb, Ni, Pd, Pt, Ta) binary systems[J]. Journal of Alloys and Compounds, 2014, 604: 142-150.
[22] Zhao J C, Zheng X, Cahill D. High-throughput measurements of materials properties[J]. Journal of the Minerals Metals and Materials Society, 2011, 63(3): 40-44.
[23] Zhang Q, Zhao J C. Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward- simulation method[J]. Intermetallics, 2013, 34: 132-141.
[24] Kainuma R, Ise M, Jia C C, et al. Phase equilibria and microstructural control in the Ni- Co- Al system[J]. Intermetallics, 1996, 4(Suppl 1): 151-158.
[25] Schramm J. Nickel-Cobalt-Aluminium ternary system[J]. Z Metalllkd, 1941, 33: 403-412.
[26] Wu E, Sun G, Chen B, et al. A neutron diffraction study of lattice distortion, mismatch and misorientation in a single- crystal superalloy after different heat treatments[J]. Acta Materialia, 2013, 61(7): 2308- 2319.
[27] Husseini N S, Kumah D P, Yi J Z, et al. Mapping single crystal dendritic microstructure and defects in Nickel-base superalloys with synchrotron radiation[J]. Acta Materialia, 2008, 56(17): 4715-4723.
[28] Ghosh S, Dimiduk D. Computational methods for microstructure-property relationships[M]. Springer, 2010.
[29] Groeber M A, Haley B K, Uchic M D, et al. 3D reconstruction and characterization of polycrystalline microstructures using a FIB- SEM system[J]. Materials Characterization, 2006, 57(4-5): 259-273.
[30] Uchic M D, Groeber M A, Dimiduk D M, et al. 3D microstructural characterization of Nickel superalloys via serial-sectioning using a dual beam FIB-SEM[J]. Scripta Materialia, 2006, 55(1): 23-28.
[31] Bhandari Y, Sarkar S, Groeber M, et al. 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis[J]. Computational Materials Science, 2007, 41(2): 222-235.
[32] Ghosh S, Bhandari Y, Groeber M. CAD-based reconstruction of 3D polycrystalline alloy microstructures from FIB generated serial sections[J]. Computer-Aided Design, 2008, 40(3): 293-310.
[33] Groeber M, Ghosh S, Uchic M D, et al. A framework for automated analysis and simulation of 3D polycrystalline microstructures: Part 1: Statistical characterization[J]. Acta Materialia, 2008, 56(6): 1257-1273.
[34] Tschopp M A, Groeber M A, Fahringer R, et al. Automated detection and characterization of microstructural features: Application to eutectic particles in single crystal Ni- based superalloys[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(2): 025014.
[35] TschoppMA,GroeberMA,FahringerR,etal.Symmetry-basedautomated extraction of microstructural features: Application to dendritic cores in single-crystal Ni-based superalloys [J]. Scripta Materialia, 2010, 62(6): 357-360.
[36] Tschopp M A, Groeber M A, Simmons J P, et al. Automated extraction of symmetric microstructure features in serial sectioning images[J]. Materials Characterizaton, 2010, 61(12): 1406-1417.
[37] UchicM,GroeberM,ShahM,etal.ANovelmulti-modal3Dcharacterization system to quantify grain-level microstructural features in macro-scale volumes[J]. Microscopy and Microanalysis, 2011, 17(Suppl2): 988-989.
[38] Groeber M, Jackson M. DREAM.3D: A digital representation environment for the analysis of microstructure in 3D[J]. Integrating Materials and Manufacturing Innovation, 2014, 3(1): 5-21.
[39] Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305(5686): 986-989.
[40] Uchic M D, Dimiduk D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing[J]. Materials Science and Engineering: A, 2005, 400-401: 268-278.
[41] Schafrik R. Materials in jet engines: Past, present, and future[EB/OL].[2015-04-02]. http://materialseducation.org/educators/mstem/2006/docs /Schafrik%20History%20of%20Mtls%20in%20Jet%20Engines%201% 20%20.pdf.
文章导航

/