研究论文

严寒地区冬季大棚保温对曝气池工作温度的影响

  • 赵嵩颖 ,
  • 战乃岩
展开
  • 吉林建筑大学市政与环境工程学院, 长春130118
赵嵩颖, 博士, 研究方向为建筑节能技术和地下资源钻采技术, 电子信箱:coffeezsy@163.com

收稿日期: 2014-11-28

  修回日期: 2015-05-01

  网络出版日期: 2015-07-15

基金资助

国家自然科学基金项目(51206061);吉林省教育厅"十二五"科学技术研究项目(吉教科合字2014年240号)

Influence of insulation technology by plastic greenhouse on working temperature in aeration tank in cold area in winter

  • ZHAO Songying ,
  • ZHAN Naiyan
Expand
  • School of Environmental and Municipal Engineering, Jilin Jianzhu University, Changchun 130118, China

Received date: 2014-11-28

  Revised date: 2015-05-01

  Online published: 2015-07-15

摘要

针对严寒地区气温低、污水厂曝气池工作温度低的问题, 利用仿真模拟分析大棚内空气温度分布及流动特性, 对严寒地区冬季低温条件下污水厂利用大棚保温技术进行研究。结果表明:在冬季室外温度-22℃条件下, 通过外扣大棚对曝气池保温, 棚内空气平均温度达到4.0℃左右, 曝气池出口水温达到11.2℃左右;曝气池外棚保温膜材料以PO 材料保温效果最优, PVC 材料最不可取, PE 和EVA 材料居中;曝气池选用2.5 m 棚拱高度的外扣大棚保温效果较好;双层保温膜保温效果优于单层保温膜。

本文引用格式

赵嵩颖 , 战乃岩 . 严寒地区冬季大棚保温对曝气池工作温度的影响[J]. 科技导报, 2015 , 33(12) : 67 -71 . DOI: 10.3981/j.issn.1000-7857.2015.12.011

Abstract

For the problem of low temperature in cold regions and low working temperature in aeration tanks in sewage works, the heat preservation technology in greenhouses of wastewater works is studied by means of simulation to analyze the temperature distribution and air flowing features in greenhouses. Results show that under the condition of -22℃ outdoors in winter, through the insulation of the canopy towards the aeration tank, the average air temperature remains at 4℃ or so, while the water temperature of the outlet of the aeration tank remains at about 11.2℃; The optimal material of insulation membrane of the outside aeration tank is PO, while the most undesirable material is PVC, And PE and EVA are mediate; and the aeration tank of the best heat preservation is the one that uses greenhouse of 2.5 meter height. The effect of double insulation membranes is better than that of a single membrane.

参考文献

[1] 于莉芳. 污泥水富集硝化菌添加强化污水处理系统硝化的试验研究 [D]. 西安: 西安建筑科技大学, 2008. Yu Lifang. Enhancing nitrification in wastewater treatment plant through bioaugmen[D]. Xi'an: Xi'an University of Architecture and Technology, 2008.
[2] Gostelow P, Parsons S A. Sewage treatment works odourmeasurment[J]. Water Science and Technology, 2000, 41(6): 33-40.
[3] North J M. Methods for quantifying lime incorporation intodewatered sludge I: Bench- scale evaluation[J]. Journal of Environmental Engineering, 2008, 134(9): 750-761.
[4] Kim H, McConnell L, Ramirez M, et al. Characterization of odors from limed biosolids treated with nitrateand anthraquinone[J]. Journal of Environmental Science and Health, 2005, 40(1): 139-149.
[5] Gostelow P, Parsons S A, Sruetz R M. Odour measures for sewage treatment works[J]. Water Research, 2001, 35(3): 579-597.
[6] Gang D, Clevenger T E, Banerji S K. Relationship of Chlorine decay and THMs formation to NOM size[J]. Journal of Hazardous Materials, 2003, 96(1): 1-12.
[7] 江安玺, 李德强, 相会强, 等. 水解酸化-生物接触氧化工艺在抗生素 废水处理中的应用[J]. 安全与环境学报, 2002, 2(2): 3-6. Jiang Anxi, LI Deqiang, Xiang Huiqiang, et al. Application of hydrolytic acidification: A bio- contact oxidizing process for liquidwaste disposal[J]. Journal of Safety and Environment, 2002, 2(2): 3-6.
[8] 赵可, 尹军, 王立军, 等. 腐殖土强化SBR工艺运行效能试验[J]. 哈尔 滨工业大学学报, 2009, 41(4): 81-84. Zhao Ke, Yin Jun, Wang Lijun, et al. Performance improvement of SBR process by addition of humus soil[J]. Journal of Harbin Institute of Technology, 2009, 41(4): 81-84.
[9] 尹军, 赵可. 腐殖活性污泥工艺在日本和韩国的应用[J]. 中国给水排 水, 2007, 23(4): 101-104. Yin Jun, Zhao Ke. Application of hummus activated sludge process in Japan and the republic of Korea[J]. China Water & Wastewater, 2007, 23(4): 101-104.
[10] 李伟英, 许京晶, 吴敏, 等. 高温厌氧下腐殖土对改善活性污泥性质 的影响[J]. 同济大学学报: 自然科学版, 2012, 40(9): 1349-1356. Li Weiying, Xu Jingjing, Wu Min, et al. Under the high temperature anaerobic humus soil to improve the effects of activated sludge properties[J]. Journal of Tongji University: Natural Science Edition, 2012, 40(9): 1349-1356.
[11] 赵嵩颖, 陈晨, 张柏林. 不同倾斜埋管方式下地热换热器温度场模拟 分析[J]. 工业安全与环保, 2014, 40(9): 40-42. Zhao Songyong, Chen Chen, Zhang Bailin. Heat simulation analysis of heat exchangers with inclined boreholes in ground-source heat pump systems[J]. Industrial Safety and Environmental Protection, 2014, 40 (9): 40-42
[12] Zhao S Y, Chen C. Heat simulation analysis of heat exchangers with inclined boreholes in ground-source heat pump systems[J]. Advanced Materials Research, 2013, 671-674: 2551-2554.
[13] Zhao S Y, Chen C. Simulation and economic analysis of the soil temperature field when concrete heat accumulation piles buried in different modes[J]. Applied Mechanics and Materials, 2013, 291-294: 1149-1152.
[14] Zhao S Y, Chen C. Soil temperature field analysis of radial buried tube continuous heat accumulation[J]. International Journal of Earth Sciences and Engineering, 2014, 7(4): 1931-1936.
[15] 张东, 王春龙, 周晓东, 等. 寒冷地区直膨式太阳能热泵热水器性能 分析[J]. 太阳能学报, 2013(12): 2121-2127. Zhang Dong, Wang Chunlong, Zhou Xiaodong, et al. Cold area direct expansion solar energy heat pump waterheater performance analysis[J]. Journal of Solar Energy, 2013(12): 2121-2127.
[16] Patankar S V. Numerical heat transfer and fluid flow[M]. Hemispher New York: Taylor & Francis Group, 1980.
文章导航

/