时差定位系统的定位精度, 主要受时间差测量和传感器几何分布的影响。由于受环境的复杂性、目标的移动性和定位的实时性制约, 时延差准确与否一直是困扰研究人员的问题。本文提出一种基于信号特征参数判别的时延差误差估计方法, 应用该方法分别对牛顿迭代搜索定位算法的搜索初值和结束条件进行了改进:首先利用各传感器的特征信息, 确定各传感器信号的信度;其次, 选择3 个可信度高的传感器进行目标定位, 其结果作为牛顿迭代搜索的初值, 避免了传统方法确定初值的复杂繁琐的计算;第三, 将各传感器的信度作为牛顿迭代搜索结束条件的权值, 使得结束条件更合理、更贴近实际。实验证明了本算法定位精度高、鲁棒性强。
The positioning accuracy of the TDOA location system is mainly influenced by the time difference measurement and the sensor geometry distribution. For the real-time positioning, due to the mobility and the complexity caused by the environmental goal control, the reasonable, efficient and accurate determination of the measured time delay difference is a plagued issue for researchers. To solve this problem, this paper proposes a method to estimate the error signal delay discrimination based on characteristic parameters. The Newton iterative search algorithm is improved to search for the initial positioning and the end condition. Firstly, the signal characteristic value information is used to establish credibility, then the initial position of the source is found through three sensors of high reliability, its results are taken as the initial values of Newton iteration to avoid the complicated calculation of the traditional method. Finally, with the reliability of each sensor as the weight of the Newton iteration termination condition, the end condition is more reasonable, more close to reality. The experiment shows that this algorithm has high precision and strong robustness.
[1] Caffery Jr J J. A new approach to the geometry of TDOA location[J]. IEEE Transactions on VTC, 2000, 4(9): 1943-1949.
[2] Ding G L, Liu Z F. An all-fiberoptoc accelerometer based on compliant cylinder[J]. Acta Optica Sinica, 2002, 22(3): 340-343.
[3] 冯立杰, 樊瑶. 基于D-S证据理论的多传感器多特征目标识别研究 [J]. 科技导报, 2014, 32(15): 32-36. Feng Lijie, Fan Yao. Target identification study of multi-sensor based on D-S evidence theory characteristics[J]. Science & Technology Review, 2014, 32(15): 32-36.
[4] 朱亚坤, 冯立杰. 基于牛顿迭代搜索法的多节点协同振源定位研究 [J]. 传感技术学报, 2011(9): 1322-1325. Zhu Yakun, Feng Lijie. Research on more nodes collocation excitation source based on newton iterative method[J]. Journal of Sensors and Actuators, 2011(9): 1322-1325.
[5] 冯立杰, 樊瑶. 基于粗大误差灰色判别的泰勒级数展开振源定位搜索 算法[J]. 西北师范大学学报: 自然科学版, 2014(11): 49-53. Feng Lijie, Fan Yao. Taylor's Series expansion search vibratory source localization algorithm based on the gross error gray discriminant[J]. Journal of Northwest Normal University: Nature Science Edition, 2014 (11): 49-53.
[6] 章坚武, 唐兵, 秦峰. Chan定位算法在三维空间定位中的应用[J]. 计 算机仿真, 2009(1): 323-326. Zhang Jianwu, Tang Bing, Qin Feng. Application of Chan location algorithm in 3- dimensional space location[J]. Computer Simulation, 2009(1): 323-326.
[7] Foy W H. Position-location solutions by taylor series estimation[J]. IIEEE Transcation on Aerospace and Electronic Systems, 1976, 12(3): 187-194.
[8] 邓聚龙. 灰色系统理论教学[M]. 武汉: 华中理工大学出版社, 1990: 24-60. Deng Julong. Gray system theory teaching[M]. Wuhan: Huazhong University Press, 1990: 24-60.
[9] Chan Y T, Ho K C. A simple and efficient estimator for hyperbolic location[J]. IIEEE Transactions on Signal Processing, 1994, 42(8): 905- 1915.
[10] 刑翠柳, 陈建民. 多站无源时差定位精度分析[J]. 信号与信息处理, 2012, 42(2): 32-34. Xing Cuiliu, Chen Jianmin. Analysis on positioning accuracy of TDOA passive location by multi- tation[J]. Radio Engineering, 2012, 42(2): 32-34.
[11] 杨林, 周一宇, 孙仲康. TDOA被动定位方法及精度分析[J]. 国防科 技大学学报, 1998, 20(2): 49-53. Yang Lin, Zhou Yiyu, Sun Zhongkang. TDOA passive location and accuracy analysis[J]. Journal of National University of Defense Technology, 1998, 20(2): 49-53.