综述文章

金属组学方法研究生物体内汞和硒相互作用

  • 赵甲亭 ,
  • 李玉锋 ,
  • 朱娜丽 ,
  • 高愈希 ,
  • 柴之芳
展开
  • 1. 中国科学院高能物理研究所, 核辐射与核能技术重点实验室, 纳米生物效应与安全性重点实验室, 北京100049;
    2. 中国科学院生物物理研究所, 蛋白质科学研究平台, 蛋白质组学技术实验室, 北京100101
赵甲亭, 博士, 研究方向为生物无机化学, 电子信箱:zhaojt@ihep.ac.cn

收稿日期: 2015-01-13

  修回日期: 2015-05-13

  网络出版日期: 2015-07-15

基金资助

国家自然科学基金项目(21407150, 11205168, 11375213);国家自然科学基金-大科学装置联合基金重点支持项目(U1432241)

Investigation of mercury- selenium interaction in bio- organisms using metallomics approach

  • ZHAO Jiating ,
  • LI Yufeng ,
  • ZHU Nali ,
  • GAO Yuxi ,
  • CHAI Zhifang
Expand
  • 1. CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
    2. Laboratory of Proteomics, Protein Science Core Facility Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2015-01-13

  Revised date: 2015-05-13

  Online published: 2015-07-15

摘要

随着金属组学及金属组学研究技术的不断发展, 近年来, 金属组学研究技术, 如各种核分析技术, 同位素稀释(示踪)技术、同步辐射X 射线荧光分析(SR-XRF)、同步辐射X 射线吸收光谱(SR-XAS)技术等, 结合电泳、色谱、质谱等生化分离、分析技术, 应用于研究生物体内硒和汞的生物学行为及相互作用机制, 将该领域研究推向一个新的高度。硒是人体及动物维系生命活动所必需的微量元素之一, 对汞等重金属的毒性具有显著的拮抗作用。全面准确地了解生物体内汞和硒的分布和存在形式, 研究生物组织中汞的吸收、迁移、转化和蓄积过程以及硒对汞的这些生物学行为和效应的影响, 对于环境汞污染和汞毒性危害的控制具有现实意义, 同时有助于理解生物体内汞和硒的相互作用过程和机制。本文综述常用的金属组学方法在植物、动物和人体内汞和硒相互作用方面的研究进展。

本文引用格式

赵甲亭 , 李玉锋 , 朱娜丽 , 高愈希 , 柴之芳 . 金属组学方法研究生物体内汞和硒相互作用[J]. 科技导报, 2015 , 33(12) : 93 -100 . DOI: 10.3981/j.issn.1000-7857.2015.12.016

Abstract

As metallomics becomes a focus area in recent years, the related research approaches are getting a rapid development. Especially for the nuclear analysis techniques, such as isotope dilution (tracer) technique, synchrotron radiation X ray fluorescence analysis (SR-XRF), and synchrotron radiation X ray absorption spectroscopy (SR-XAS) techniques, combined with other biochemical separation and analysis techniques like electrophoresis, high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), electrospray ionization mass spectrometry (ESI-MS) and so on, they have been widely used for the function and interaction research of Hg and Se in bio-organisms. Selenium (Se) is one of the essential trace elements for human and animals, and can apparently antagonize the toxicity of heavy metals such as mercury (Hg). To analyze the distribution and speciation of Se and Hg in organisms, to get a insight into their absorption, transformation and accumulation in different tissues, and to further explore the potential roles of Se on the bio- effects of Hg in organisms is quite crucial for the control of Hg pollution and the acquaintance with Hg-Se interaction in bio-organisms. Based on the previous reports and the results from our lab, the present work will give an informative review about the metallomics approaches as applied in the research of Hg, Se interaction in bio-organisms.

参考文献

[1] Betti C, Davini T, Barale R. Genotoxic activity of methyl mercury-chloride and dimethyl mercury in human- lymphocytes[J]. Mutation Research, 1992, 281(4): 255-260.
[2] Block L S. The toxicology of mercury[J]. New England Journal of Medicine, 2004, 350(9): 945-945.
[3] Bensefa-Colas L, Andujar P, Descatha A. Mercury poisoning[J]. Revue de Medecine Interne, 2011, 32(7): 416-424.
[4] Bisinoti M C, Jardim W F. Behavior of methylmercury in the environment [J]. Quimica Nova, 2004, 27(4): 593-600.
[5] Bergeron C M, Bodinof C M, Unrine J M, et al. Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians[J]. Environmental Toxicology and Chemistry, 2010, 29(4): 980-988.
[6] Jiang G B, Shi J B, Feng X B. Mercury pollution in China[J]. Environmental Science & Technology, 2006, 40(12): 3672-3678.
[7] Feng X. Mercury pollution in China—an overview[M]//Dynamics of Mercury Pollution on Regional and Global Scales. New York: Springer, 2005: 657-678.
[8] Qiu G L, Feng X B, Wang S F, et al. Environmental contamination of mercury from Hg- mining areas in Wuchuan, northeastern Guizhou, China[J]. Environmental Pollution, 2006, 142(3): 549-558.
[9] 丁振华, 王文华, 瞿丽雅, 等. 贵州万山汞矿区汞的环境污染及对生 态系统的影响[J]. 环境科学, 2004, 25(2): 111-114. Ding Zhenhua, Wang Wenhua, Qu Liya, et al. Mercury pollution and its ecosystem effects in Wanshan mercury miner area, Guizhou[J]. Environmental Science, 2004, 25(2): 111-114.
[10] 袁晓博, 冯新斌, 仇广乐, 等. 中国大米汞含量研究[J]. 地球与环境, 2011, 39(3): 318-323. Yuan Xiaobo, Feng Xinbin, Qiu Guangle, et al. Mercury concentration in rice from China[J]. Earth and Environment, 2011, 39(3): 318-323.
[11] Feng X B, Qiu G L, Li G H, et al. Gold mining related mercury contamination in Tongguan, Shanxi Province, P.R. China[J]. Applied Geochemistry, 2006, 21(11): 1955-1968.
[12] 刘培棣. 硒资源及其综合开发利用[M]. 北京: 中国科学技术出版社, 1993. Liu Peidi. Selenium resources and comprehensive exploitation and utilization of selenium[M]. Beijing: Science and Technology of China Press, 1993.
[13] Beckett G J, Arthur J R. Selenium and endocrine systems[J]. Journal of Endocrinology, 2005, 184(3): 455-465.
[14] Tinggi U. Selenium: its role as antioxidant in human health[J]. Environmental Health and Preventive Medicine, 2008, 13(2): 102-108.
[15] 陈铭, 刘更另. 高等植物的硒营养及在食物链中的作用(二)[J]. 土壤 通报, 1996, 27(4): 185-188. Chen Ming, Liu Gengling. Selenium as a nutrient in high plant and its role in the food chain[J]. Chinese Journal of Soil Science, 1996, 27 (4): 185-188.
[16] Haraguchi H. Metallomics as integrated biometal science[J]. Journalof Analytical Atomic Spectrometry, 2004, 19(1): 5-14.
[17] Szpunar J. Metallomics: A new frontier in analytical chemistry[J]. Analytical and Bioanalytical Chemistry, 2004, 378(1): 54-56.
[18] Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: Metallomics, metalloproteomics and heteroatomtagged proteomics and metabolomics[J]. Analyst, 2005, 130(4): 442- 465.
[19] 高愈希, 陈春英, 柴之芳. 先进核分析技术在金属蛋白质组学研究中 的应用[J]. 核化学与放射化学, 2008, 30(1): 1-16. Gao Yuxi, Chen Chunying, Chai Zhifang. Application of advanced nuclear analytical techniques in metalloproteomics[J]. Journal of Nuclear and Radiochemistry, 2008, 30(1): 1-16.
[20] Li Y F, Gao Y X, Chai Z F, et al. Nanometallomics: an emerging field studying the biological effects of metal- related nanomaterials[J]. Metallomics, 2014, 6(2): 220-232.
[21] Ammann A A. Inductively coupled plasma mass spectrometry (ICPMS): A versatile tool[J]. Journal of Mass Spectrometry, 2007, 42(4): 419-427.
[22] Thompson M W. Handbook of inductively coupled plasma spectrometry [M]. Glasgow: Blackie, 1983: 6-15.
[23] Hayat M A. X-ray microanalysis in biology[M]. University Park: New Jersey, 1980: 2-3.
[24] Geraki K, Farquharson M J, Bradley D A. Concentrations of Fe, Cu and Zn in breast tissue: A synchrotron XRF study[J]. Physics in Medicine and Biology, 2002, 47(13): 2327-2339.
[25] Ide-Ektessabi A F S, Sugimura K, et al. Quantitative analysis of zinc in the prostate cancer tissues using synchrotron radiation micro beams [J]. X-Ray Spectrom, 2002, 31(1): 7-11.
[26] Twining B S, Baines S B, Fisher N S, et al. Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe[J]. Analytical Chemistry, 2003, 75(15): 3806- 3816.
[27] Ortega R, Bohic S, Tucoulou R, et al. Microchemical element imaging of yeast and human cells using synchrotron X-ray microprobe with Kirkpatrick-Baez optics[J]. Analytical Chemistry, 2004, 76(2): 309- 314.
[28] Gao Y X, Liu N Q, Chen C Y, et al. Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1121-1124.
[29] Wang H J, Wang M, Wang B, et al. Quantitative imaging of element spatial distribution in the brain section of a mouse model of Alzheimer's disease using synchrotron radiation X- ray fluorescence analysis[J]. Journalof Analytical Atomic Spectrometry, 2010, 25(3): 328-333.
[30] Wang H J, Wang M, Wang B, et al. The distribution profile and oxidation states of biometals in APP transgenic mouse brain: dyshomeostasis with age and as a function of the development of Alzheimer's disease[J]. Metallomics, 2012, 4(3): 289-296.
[31] Martin D, de Jonge C H, Stephen B, et al. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution[J]. PNAS, 2010, 107(36): 15676-15680.
[32] Zhang C, Yu B B, Shi J J, et al. Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2002, 74(1): 96-99.
[33] Hu S H, Hu Z C, Zhang X R. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged[J]. Analytical Chemistry, 2007, 79(3): 923-929.
[34] Chen N, He Y, Su Y Y, et al. The cytotoxicity of cadmium-based quantum dots[J]. Biomaterials, 2012, 33(5): 1238-1244.
[35] Song S P, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules[J]. Chemical Society Reviews, 2010, 39(11): 4234-4243.
[36] Zhu Y, Cai X Q, Li J, et al. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials[J]. Nanomed-Nanotechnol, 2014, 10(3): 515-524.
[37] Zhu Y, Li W X, Zhang Y, et al. Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy[J]. Small, 2012, 8(11): 1771-1779.
[38] Zhu Y, Li J, Li W X, et al. The biocompatibility of nanodiamonds and their application in drug delivery systems[J]. Theranostics, 2012, 2(3): 302-312.
[39] 李玉锋, 高愈希, 陈春英, 等. 金属组学: 高通量分析技术进展与展 望[J]. 中国科学: 化学, 2009, 39(7): 580-589. Li Yufeng, Gao Yuxi, Chen Chunying, et al. High throughput analytical techniques in metallomics and the perspectives[J]. Science in China: Chemistry, 2012, 2(3): 302-312.
[40] Li Y F, Chen C Y, Qu Y, et al. Metallomics, elementomics and the analytical techniques[J]. Pure and Applied Chemistry, 2008, 80(12): 2577-2594.
[41] 张涛, 高愈希, 李柏, 等. 高效液相色谱-等离子体质谱联用方法研 究富硒大米中硒的形态[J]. 分析化学, 2008, 36(2): 206-210. Zhang Tao, Gao Yuxi, Li Bai, et al. Study of selenium speciesin selenized rice using high performance liquid chromatography- Inductively Coupled Plasma-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(2): 206-210.
[42] 张涛, 吴刚, 陈春英, 等. 联用技术在植物硒形态分析中的应用[J]. 理化检验: 化学分册, 2009, 45(6): 749-760. Zhang Tao, Wu Gang, Chen Chunying, et al. Application of hyphenation of different analytical methodsto speciation analysisof seleniumin plants[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2009, 45(6): 749-760.
[43] 王萌, 丰伟悦, 张芳, 等. 高效液相色谱-电感耦合等离子体质谱联 用测定生物样品中无机汞和甲基汞[J]. 分析化学, 2005, 33(12): 1671-1675. Wang Meng, Feng Weiyue, Zhang Fang, et al. Determination of inorganic and methylmercury in biological samples by high performance liquid chromatography coupled with Inductively Coupled Plasma-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2005, 33(12): 1671-1675.
[44] Li Y F, Chen C Y, Li B, et al. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2006, 21 : 94-96.
[45] Li Y F, Chen C Y, Li B, et al. Simultaneous speciation of selenium and mercury in human urine samples from long- term mercuryexposed populations with supplementation of selenium-enriched yeast by HPLC- ICP- MS[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(8): 925-930.
[46] Li Y F, Hu L, Li B, et al. Full quantification of selenium species by RP and AF-ICP-qMS with on-line isotope dilution in serum samples from mercury-exposed people supplemented with selenium-enriched yeast[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(1): 224- 229.
[47] 高愈希, 丰伟悦, 李柏, 等. 同步辐射X荧光法测定电泳分离后蛋白 条带内的锌[J]. 核技术, 2004, 27(3): 165-168. Gao Yuxi, Feng Weiyue, Li Bai, et al. Analysis of zinc in protein bands after electrophoresis separation by synchrotron radiationX-ray fluorescence[J]. Nuclear Techniques, 2004, 27(3): 165-168.
[48] Gao Y X, Liu Y B, Chen C Y, et al. Combination of synchrotron radiation X- ray fluorescence with isoelectric focusing for study of metalloprotein distribution in cytosol of hepatocellular carcinoma and surrounding normal tissues[J]. Jounal of Analytical Atomic Spectrometry, 2005, 20(5): 473-475.
[49] 刘颖斌, 高愈希, 陈春英, 等. 聚丙稀酰胺凝胶基体中蛋白条带内金 属含量的同步辐射X荧光定量分析[J]. 高能物理与核物理, 2005, 29: 61-64. Liu Yingbin, Gao Yuxi, Chen Chunying, et al. Quantitative analysis of iron in protein bands existing in polyacrylamide gel matrix with synchrotron radiation X-ray fluorescence[J]. High Energy Physics and Nuclear Physics, 2005, 29: 61-64.
[50] Zhao J T, Pu Y X, Gao Y X, et al. Identification and quantification of seleno- proteinsby 2- DE- SR- XRF in selenium- enriched yeasts[J]. Journal of Analytical Atomic Spectrometry, 2015, doi: 10.1039/ c5ja00043b.
[51] Harris H H, Pickering I J, George G N. The chemical form of mercury in fish[J]. Science, 2003, 301(5637): 1203-1203.
[52] 胡蓉, 吴自玉, 刘静, 等.用XANES实验方法研究Cr的价态[J]. 高能 物理与核物理, 2004, 28(1): 100-102. Hu Rong, Wu Ziyu, Liu Jing, et al. XANES in vestigation of chromium valence state in yeast biomass[J]. High Energy Physics and Nuclear Physics, 2004, 28(1): 100-102.
[53] 李玉锋, 陈春英, 邢丽, 等. 贵州万山汞矿地区人发中汞的含量及其 赋存状态的XAFS原位研究[J]. 核技术, 2004, 27(12): 899-903. Li Yufeng, Chen Chunying, Xing Li, et al. Concentrations and XAFS speciation in situ of mercury in hair from populations in Wanshan mine area, Guizhou Province[J]. Nuclear Techniques, 2004, 27(12): 899-903.
[54] Li Y F, Wang X Y, Wang L M, et al. Direct quantitative speciation of selenium in selenium-enriched yeast and yeast-based products by Xray absorption spectroscopy confirmed by HPLC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 426-430.
[55] Parízek J O I. The protective effect of small amounts of selenite in sublimate intoxication[J]. Experientia, 1967, 23(2): 142-143.
[56] Koeman J H, Koudstaal-Hol C H M. Mercury-seleniumcorrelationsin marinemammals[J]. Nature, 1973, 245: 385-386.
[57] Ganther H, Goudie C, Sunde M, et al. Selenium: Relation to decreased toxicity ofmethylmercury added to diets containing tuna[J]. Science, 1972, 175(4026): 1122-1124.
[58] Hansen J, Kristensen P, Al-Masri S. Mercury/selenium interaction. A comparative study on pigs[J]. Nordisk veterinaermedicin, 1981, 33(2): 57.
[59] Khan M A, Wang F. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury- selenium antagonism[J]. Environmental Toxicology and Chemistry, 2009, 28(8): 1567-1577.
[60] Whanger P. Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis[J]. Journal of Trace Element and Electrolytes in Health and Disease, 1992, 6(4): 209.
[61] Li L, Gao Y X, Sun J, et al. Detection of mercury-, arsenic-, and selenium-containing proteins in fish liver from mercury polluted area of Guizhou privince, China[J]. Journal of Toxicology and Environmental Health-part Acurrent Issues, 2008, 71(18): 1266-1269.
[62] Gao Y X, Peng X M, Zhang J C, et al. Cellular response of E.coli upon Hg2 ++ exposure- A case study of advanced nuclear analytical approach to metalloproteomics[J]. Metallomics, 2013, 5(7): 913-919.
[63] Shanker K, Mishra S, Srivastava S, et al. Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum)[J]. Plant and Soil, 1996, 183(2): 233-238.
[64] Shanker K, Mishra S, Srivastava S, et al. Study of mercury-selenium (Hg- Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant[J]. Food and Chemical Toxicology, 1996, 34 (9): 883-886.
[65] Thangavel P, Shahira Sulthana A, Subburam V. Interactive effects of selenium and mercury on the restoration potential of leaves of the medicinal plant (Portulaca oleracea) Linn[J]. Science of the Total Environment, 1999, 243-244: 1-8.
[66] Mounicou S, Shah M, Meija J, et al. Localization and speciation of selenium and mercury in Brassica juncea- implications for Se- Hg antagonism[J]. Journalof Analytical Atomic Spectrometry, 2006, 21(4): 404-412.
[67] McNear D H, Afton S E, Caruso J A. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum[J]. Metallomics, 2012, 4(3): 267-276.
[68] Yathavakilla S K V, Caruso J A. A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC- ICPMS[J]. Analyticaland Bioanalytical Chemistry, 2007, 389 (3): 715-723.
[69] 赵甲亭, 李云云, 高愈希, 等. 贵州万山汞矿地区耐汞野生植物研究 [J]. 生态毒理学报, 2014, 9(5): 23-30. Zhao Jiating, Li Yunyun, Gao Yuxi, et al. Study of mercury resistance wild plants growing in the mercury mine area of Wanshan District, Guizhou Province[J]. Asian Journal of Ecotoxicology, 2014, 9(5): 23- 30.
[70] Zhao J T, Gao Y X, Li Y F, et al. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum L.)[J]. Environmental Research, 2013, 125: 75-81.
[71] Zhao J T, Hu Y, Gao Y X, et al. Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium sativum) [J]. Metallomics, 2013, 5(7): 896-903.
[72] Feng X B, Li P, Qiu G L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China [J]. Environment Science & Technology, 2007, 42(1): 326-332.
[73] Li Y F, Zhao J T, Li Y Y, et al. The concentration of selenium matters: A field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China[J]. Plant and Soil, 2015, 391(1/ 2): 195-205.
[74] Zhao J T, Li Y F, Li Y Y, et al. Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level[J]. Metallomics, 2014, 6(10): 1951-1957.
[75] 李云云, 赵甲亭, 高愈希, 等. 根表铁膜的形成和添加硒对水稻吸收 转运无机汞和甲基汞的影响[J]. 生态毒理学报, 2014, 9(5): 972-977. Li Yunyun, Zhao Jiating, Gao Yuxi, et al. Effect of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice (Oryza sativa L.) [J]. Asian Journal of Ecotoxicology, 2014, 9(5): 972-977.
[76] Chai Z F, Feng W Y, Qian Q F, et al. Correlation of mercury with selenium in human hair at a typical mercury-polluted area in China [J]. Biological Trace Element Research, 1998, 63(2): 95.
[77] Chen C, Yu H, Zhao J, et al. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure[J]. Environmental Health Perspectives, 2006, 114(2): 297- 301.
[78] Li Y F, Dong Z, Chen C, et al. Organic selenium supplementation increases mercury excretion and decreases oxidative damage in longterm mercury-exposed residents from Wanshan, China[J]. Environmental Science & Technology, 2012, 46(20): 11313-11318.
[79] 黄笑寒, 李玉锋, 董泽琴, 等. RP-HG-AFS联用研究长期汞暴露人 群补硒前后血清中汞的形态[J]. 分析实验室, 2011, 30(7): 14-17. Huang Xiaohan, Li Yufeng, Dong Zeqin, et al. Investigation of mercury species in serum from long term mercury exposed people before and after selenium supplementation by RP-HG-AFS[J]. Chinese Journal of Analysis Laboratory, 2011, 30(7): 14-17.
文章导航

/